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Abstract

Footprint morphology reflects the anatomy of the trackmaker’s foot and is direct evidence

for the animal’s behaviour. Consequently, fossil tracks can be used to infer ancient diversity,

ethology, and evolutionary trends. This is particularly useful for deep-time intervals during

which the early history of an animal group is reliant upon limited fossil skeletal material. Fos-

sil tracks of early birds and theropods, the co-existing dinosaurian ancestors of birds, co-

occur in the rock record since the Early Cretaceous. However, the evolutionary transition

from dinosaur to bird and the timing of the birds’ origin are still contested. Skeletal remains

of the basal-most birds Aurornis, Anchiornis, Archaeopteryx and Xiaotingia are Middle to

Late Jurassic, while tracks with tentative bird affinities, attributed to dinosaurs, are known

from as early as the Late Triassic. Here, we present numerous, well-provenanced, Late Tri-

assic and Early Jurassic tridactyl tracks from southern Africa, with demonstrable bird-like

affinities, predating basal bird body fossils by c. 60 million years.

Introduction

Birds are one of the most diverse groups of animals on Earth with ~10 000 extant species [1],

yet their early evolutionary history is still shrouded in mystery [2]. The dinosaurian origin of

modern birds (Neornithes) unequivocally points to Maniraptora, a group of theropods [e.g., 3,

4], but the timing of the origin of birds is contested. The oldest body fossil record of basal

birds comprises Middle to Late Jurassic (150–160 Ma) Aurornis, Anchiornis, Archaeopteryx
and Xiaontingia [e.g., 5–8], while dinosaurian footprints with bird-like morphologies are

known since the Late Triassic [e.g., 9–12]. The basal birds known from body fossils likely origi-

nated in the Early or pre-Jurassic, although, to-date, this is unconfirmed by the early osteologi-

cal record that is exceedingly fragmentary. The only Late Triassic body fossil specimen posited

to be bird-like is Protoavis [13], but this assessment is based on ambiguous material [3, 14] and

is not widely accepted to be a basal bird. In this context, all ancient bird-like palaeontological

discoveries are vital for unravelling both the origin of birds and the evolution of dinosaurs.

Multiple tridactyl tracks with a “proto-avian” morphology from the Upper Triassic to

Lower Jurassic of southern Africa were assigned to the ichnogenus Trisauropodiscus in the

mid-1900s [15–20] (S1 Table). Since its erection, the validity of the ichnogenus has been ques-

tioned [e.g.,21, 22], though recently there has been a resurgence of authors supporting
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Trisauropodiscus [12, 23], or at least the ichnospecies T. aviforma [24], as valid. Although rec-

ognizing Trisauropodiscus and its “proto-avian” affinity may potentially shift the origin of

bird-like footprints by c. 60 million years, these tracks have essentially been disregarded for the

last 50 years except for a handful of studies [e.g.,12, 23, 25, 26]. Based on the interpretive

sketches and brief descriptions, the avian affinity of Trisauropodiscus has been hotly debated:

some authors have likened the tracks to Anomoepus [e.g., 2, 21, 27, 28] accepted to be attrib-

uted to an ornithischian dinosaur, while others have agreed with its bird-like morphology

[e.g., 22, 25], likening it to Gruipeda [22] which is attributed to plover-like birds.

Here, we re-examine field material, original cast material, historical photographs and pub-

lished interpretive sketches obtained from four locations in southern Africa (Fig 1) to reassess

Trisauropodiscus. Our findings suggest that there are two distinct Trisauropodiscus morpho-

types, one of which resembles footprints made by birds.

Material and methods

The track data considered in this study utilizes field material as well as cast material housed at

the Université de Montpellier (France) and the Morija Museum and Archives (Lesotho), his-

torical photographs and published interpretive sketches [16, 17, 18, 19] (see S1 Fig; S1–S3

Tables). The tracks are documented using standard, modern ichnological protocols [30] and

no permits were required for the described study. Interpretative morphological outlines of the

field and cast tracks were aided by false-colour depth maps produced using CloudCompare

(version 2.6.1), which utilizes scaled 3D-photogrammetric models (for detailed methods, see

Fig 1. Geographic and stratigraphic location of southern African Trisauropodiscus ichnosites, modified after [29]. Detailed stratigraphic

provenance of the ichnites is shown in S1 Table. Geological map has been modified from the Simplified Geology map (1:1000 000) of South Africa,

Lesotho and Swaziland under a CC BY license, with permission from the CGS, original copyright [2003].

https://doi.org/10.1371/journal.pone.0293021.g001
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[31]. Photogrammetric models and modelling data can be found in the Supplementary Materi-

als (10.6084/m9.figshare.20291871). Standard tridactyl track and trackway parameters track

length (TL), track width (TW), digit projection (DP), total digit divarication (II^IV), stride

length, pace angulation (PA) and track rotation were measured on site or using ImageJ [32]

(Fig 2; S2 and S3 Tables). To account for more of the track morphology, eight landmarks (LM)

were identified and placed on morphologically well-defined field tracks and cast material (Fig

1). LM1 to LM3 were placed at the digit tip impressions (excluding claw marks) and LM4 at

the proximal “heel” impression to account for TL, TW, LII-IV and II^IV. LM5-6 and LM7-8

were placed medially and perpendicularly to LM2 and LM4, and LM3 and LM4, respectively.

This accounts for the digit width and allows the LMs to be placed consistently (digital pad

impressions are lacking for most tracks and cannot be used as markers along the digit length).

Landmarks were placed on perpendicular photographs using TpsUtil 1.75 and TpsDig soft-

ware. A Procrustes fitting was applied to all the landmark data and the landmark-based princi-

pal component analysis was performed using PAST v3. The considered Ellenberger

Trisauropodiscus morphotypes were compared to Anomoepus [33, 34] attributed to an ornith-

ischian trackmaker; the Grallator-Anchisauripus-Eubrontes plexus [35], Kayentapus [36–38]

and Plesiornis [9] attributed to theropod trackmakers; and Aquatilavipes [39, 40], Avipeda [41,

42], Gruipeda [22], Jindongornipes [42], Quadridigitus [42] attributed to avian trackmakers, as

well as recently discovered Trisauropodiscus [12, 23]. A variance-covariance matrix was

applied between groups with PC1 accounting 84% and PC2 accounting for 6% of the variation.

Track orientation data was measured in ImageJ from original and historical field photographs,

and analysed using Rose.Net, a freeware program for plotting directional rose diagrams and

calculating vector statistics.

Fig 2. Measured parameters and landmark placement quantifying track morphology. Abbreviations: TL–track length, TW–track width, II^IV–total digit

divarication, LM–landmark.

https://doi.org/10.1371/journal.pone.0293021.g002
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Results

In the past two decades, we have revisited and redocumented numerous sites originally

reported by Paul Ellenberger [e.g., 29, 31, 43–46] and from this are able to validate that his

work from the mid-1900s is a fair representation of the relative stratigraphic placement and

ichnological diversity. The original Trisauropodiscus were reported from four localities in

Lesotho, and in our investigations, we successfully relocated the field material at Maphutseng

(Fig 1), which we describe herein in more detail.

The Maphutseng tracksite records a diverse range of ichnites (Fig 3), initially documented

by [47], following its discovery by Paul Ellenberger in 1955. In our current and previous stud-

ies, we assessed the sedimentary architecture of the host rocks at the site and in the surround-

ing areas. Based on the sedimentological analysis and stratigraphic correlations in the region

(Fig 3), the tracksite is located in the uppermost part of the lower Elliot Formation (lEF),

approximately 20 meters below the lithostratigraphic contact with the overlying upper Elliot

Formation (uEF). At Maphutseng, this lithostratigraphic boundary within the Elliot Formation

is clearly defined by a mappable pedogenic nodule conglomerate unit, up to 2 meters thick,

along with other sedimentary facies specific to the uEF. Compared to the uEF, the lEF is char-

acterized by distinct lithofacies associations (Fig 3B), including differences in external and

internal geometries of the sandstone units (Fig 3C), mineralogical composition, grain size, and

palaeo-current patterns [48]. Although our litho- and biostratigraphic re-assessments suggest

that the Maphutseng tracksite belongs to the uppermost part of the lEF, implying a Late Trias-

sic age, a more precise age was also obtained by us through U-Pb LA-ICPMS age determina-

tions of detrital zircons extracted from sandstones at the study site [29]. These results together

with other maximum depositional ages obtained at tracksites across the outcrop area of the

Elliot Formation in the main Karoo Basin are fully documented in [29] and references cited

therein.

The Maphutseng footprints are preserved on the upper surface of an asymmetrical sand-

stone-dominated rock unit (Fig 3C). This unit consists mostly of laterally stacked sandstone

layers with multiple fining-upward successions (Fig 3B), which is typical of the laterally

accreted, meandering channel deposits common in the lEF [29, 48]. Along a major erosional

contact, the sandstone unit is incised into the underlying red mudstone unit (Fig 3C). The

same mudstones, which have yielded several hundred fossil bones, are known for having

hosted the famous Maphutseng dinosaur cemetery [49], which is one of the laterally most

extensive fossil-rich layers ever discovered, and now fully excavated, in upper Triassic of

southern Africa.

The track-bearing palaeosurface spans ~80 meters in length and ~5 meters in width, and its

extensive documentation was provided by [17]; however, neither the Ellenbergers’ descrip-

tions, including published and unpublished photographs, nor our field investigations revealed

any evidence of ancient microbial surfaces or water-saturated substrates in the northern

extreme of the surface, where Trisauropodiscus tracks are most common (Fig 3A–3D). Desic-

cation cracks, on the other hand, are commonly found (S1 Fig) and are preserved both among

the tracks and propagating from them in this sector of the palaeosurface. In the latter case, the

relative timing of track and crack formation is unequivocal, with the tracks predating the

cracks [50]. In the southern sector of the track-bearing palaeosurface, evidence of ancient

microbial surfaces is lacking, however water-saturated substrates were likely more common, as

indicated by sediment collapse features associated with tracks. The decrease in water satura-

tion levels from south to north aligns with the overall sedimentological evidence at the site,

suggesting that the palaeosurface likely represents the surface of a meander point bar that was

more emergent in the north relative to the south (Fig 3).
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Fig 3. Sedimentological, stratigraphical and ichnological contexts of the Maphutseng tracksite. A) Local stratigraphy viewed from the footprint

site, facing roughly north. B) Sedimentological log with facies codes of the sandstone-dominated, asymmetrical rock unit that immediately underlies

the Maphutseng tracksite (see C for log’s position). C) N–S outcrop view of the stacked sandstone layers and multiple fining-upward successions

(see log in B). Note the erosional contact of the sandstone unit and the underlying red, fossiliferous mudstone unit. See D for tracks documented by

[47]. D) Maphutseng tracksite ichnodiversity showing at least 10 different individual footprint morphologies on a redrawn map of the original
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Six discrete, herein unidentified, trace-like markings are exclusively preserved on the north-

ern-most surface in association with Trisauropodiscus on the Maphusteng track-bearing

palaeosurface (Fig 4). These markings, preserved as casts, have teardrop-like [51–53], figure of

eight-like [51, 52], crescent-to-ring-like [54], curviform-to-sinuous [54], chain-like [42, 54],

and bilobate morphologies. Although certain markings may appear similar to feeding traces

resulting from bird pecking and probing, their interpretation remains unresolved. This is due

not only to their resemblance to invertebrate traces but also because some, such as the teardrop

and sinuous shapes, may be partial, overprinted, weathered or eroded track impressions.

Seven ichnospecies, based on varying morphological features, were originally assigned to

the Trisauropodiscus ichnogenus [15–20]. Based on size, track length-to-width ratios, and digit

morphologies of the holotype material, we assign them to two distinct morphotypes (Fig 5; S1

Fig; S1 and S2 Tables): Morphotype I, comprising T. galliforma, T. levis, T. popompoi, and T.

superaviforma, is marginally longer than wide with robust digits that have a smaller total digit

divarication, while Morphotype II, comprising T. aviforma, T. phasianiforma, and T. supera-
vipes, is wider than long with slender digits and a larger total digit divarication.

On average, Morphotype I tracks are larger than Morphotype II (6.59±5.19 cm vs 3.83±1.80

cm) but their distinct morphological characteristics are unlikely attributed to allometric

changes as morphologies typifying Morphotype II are also preserved in larger tracks with track

lengths typical of Morphotype I and vice versa (e.g., tracks 10 and 39; S1 Fig; S2 Table). Both

morphotypes are known from both Late Triassic and Early Jurassic ichnosites and commonly

co-occur on these track-bearing surfaces (Figs 3 and 4; S1 Fig; S1 Table). While the morpho-

logical differences between Morphotype I and II could justify their classification into separate

ichnogenera, this study does not include any ichnotaxonomic assessment or revision of the

diagnosis of Trisauropodiscus.
A total of 163 Trisauropodiscus tracks from field and historical photographs were evaluated

on 11 individual track-bearing slabs from the Maphutseng and Thejane track sites to deter-

mine the track orientation and density (see Methods; S4 and S5 Tables). The average track

number per slab is 10, when disregarding the lowest and highest track numbers, which are 4

and 64, respectively. On each slab, the tracks are directed at random, and this lack of orienta-

tion is well illustrated by the vector statistics. Track directional data has a standard deviation

range of ~ 18˚–80˚ and a consistency ratio of 0.01–0.95. When disregarding the lowest and

highest values, the average standard deviation and consistency ratio of the directional data is ~

66˚ and ~ 0.49, respectively. The vector statistics of the slab with the highest track number

(n = 64) shows the highest standard deviation and lowest consistency ratio at 80.42˚ and 0.01,

respectively.

Morphotype I

Morphotype I tracks are documented from the Maphutseng field ichnosite, cast material, and

interpretive sketches (Figs 1 and 3; Table 1; S1 Fig; S1–S3 Tables). At Maphutseng, the isolated,

asymmetrical tracks are preserved as slightly longer than wide (mean TL/TW of 1.07±0.09)

shallow hyporeliefs. The digit impressions (LII<LIII<LIV) are relatively robust, with rounded

tips and pad impressions preserved in tracks 9 and 10, and claw marks preserved in track 10

(S1 Fig). Where digital pads are present, the proximal digit IV pad is distinctly aligned with the

central axis of digit III. Cast materials preserve the same morphology, with a digital pad for-

mula of 2-3-4 clear in track 37 (repository A#BM056; Fig 5). Comparable moderate average

tracks from [47]. Note that cluster H and other magenta tracks mark Trisauropodiscus on the surface in C. The Maphutseng tracksite ichnodiversity

map has been modified from [47] under a CC BY license, with permission from the Société Géologique de France, original copyright [1960].

https://doi.org/10.1371/journal.pone.0293021.g003
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total digit divarication angles are preserved for the field and cast material (84˚ vs 81˚; Table 1;

S2 Table). A single, bipedal Morphotype I trackway is documented in repository A#G041

(tracks 33 to 35; S1 Fig) with the tracks having a slight rotation relative to the midline (track

33–6˚, track 34 4˚), a large pace angulation of 151˚, and a stride 6 times the track length (S3

Table). Interpretive sketches of Morphotype I have measured parameters within a single

Fig 4. Photographs, interpretive outlines and false-colour depth maps of distinct traces associated with Trisauropodiscus at Maphutseng. False colour

depth maps are applied to 3D photogrammetric models, where blue and red reflect negative and positive relief, respectively, relative to the average relief. See

Methods for details. A, A’, A”) Markings resembling either pecking and probing activity, partial track (digit) impressions or invertebrate traces. B, B’, B”)

Markings resembling either a continuous pecking trace or invertebrate trace. C, C’, C”) Unequivocal invertebrate trace and markings resembling either pecking

and probing activities, or partial track (digit) impressions or invertebrate traces. Abbreviations: b–bilobate trace, c–chain-like trace, cr–crescent ring-like trace,

cs–curviform-to-sinuous trace, f–figure of eight-like trace, i–invertebrate trace, t–teardrop-like trace.

https://doi.org/10.1371/journal.pone.0293021.g004
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Fig 5. Morphological comparison of southern African Trisauropodiscus morphotypes with established ichnogenera attributed to avian,

ornithischian and theropod trackmakers. Morphotypes I and II are largely indistinguishable when considering their track length-to-width ratio

and total digit divarication, though Morphotype I generally has lower total digit divarication angles. When considering additional features using

landmark-based principal component analysis, the two morphotypes form distinct fields. Although Morphotype I resembles Anomoepus, when

plotted, the two ichnogenera fields do not overlap. Morphotype II morphospace consistently corresponds to established avian ichnogenera. Notably,
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standard of deviation overlap with the measured parameters of the field and cast material, but

on average, the illustrated material is wider and has larger digit splays (Fig 5; Table 1; S1 Fig;

S1 Table). The sketched trackways are also bipedal, with average track rotations of -13˚, pace

angulations of 174˚ and stride 8 times the track length (S3 Table).

The wide and round digit morphology of Morphotype I, with the digit IV proximal pad

aligned with digit III, resembles Anomoepus [33, 34], a contemporaneous tridactyl track. The

pes impression of Anomoepus is small (track length < 20 cm), asymmetrical, and distinctly

both morphotypes are discrete from the classical, contemporaneous theropod ichnogenera Kayentapus, Grallator, Anchisauripus and Eubrontes. A)

Photograph and false colour depth map of a typical Morphotype I and Morphotype II track. Key differences include larger track size, more robust

digits and smaller total digit divarication of Morphotype I relative to Morphotype II. False-colour depth maps are applied to 3D photogrammetric

models, where blue reflects negative relief and red reflects positive relief relative to the average relief. See Methods for details. B) Length-to-width

ratio and total digit divarication angle plot. Measurements for the southern African morphotypes were performed by a single operator on> 80

tracks comprising field material (27 tracks), cast material (13 tracks), historical photographs (15 tracks), and published sketches (34 tracks, Table 1;

S1 and S2 Figs, S1 Table). See Methods for details and S2 Fig for the track numbers corresponding to the data points. C) Landmark-based principal

component analysis. Eight landmarks were placed on orthophotographs of the Trisauropodiscus morphotypes and comparative ichnotaxa by a

single operator to account for additional morphological features such as digit thickness and anterior projection of the central digit. The

morphospaces are most strongly controlled by landmarks, which are influenced by track width, total digit divarication and digit thickness. See

Methods for details and S2 Fig for the track numbers corresponding to the data points. Abbreviations: TL–Track length, TW–Track width, II-IV–

Digit numbers, II^IV–digit divarication angle.

https://doi.org/10.1371/journal.pone.0293021.g005

Table 1. Track measurements for field material, cast material, historical photographs and illustrated sketches of Trisauropodiscus morphotypes I and II. See S1 Fig

and S1 and S2 Tables for details.

TL TW TL/TW DP DP/TW II^IV TL TW TL/TW DP DP/TW II^IV

Field material Historical photographs

Min 4.30 3.82 1.00 1.55 0.41 74

Morphotype I Max 4.55 4.28 1.13 2.02 0.47 87 Morphotype I

(n = 3) Mean 4.38 4.05 1.07 1.79 0.44 81 (n = 0)

Std. dev 0.14 0.33 0.09 0.33 0.05 9

Min 1.47 3.64 0.38 0.62 0.16 78 Min 1.97 2.54 0.75 1.07 0.27 85

Morphotype II Max 5.19 7.69 1.17 4.17 0.96 160 Morphotype II Max 11.74 14.60 0.98 3.93 0.65 139

(n = 23) Mean 3.90 4.46 0.88 2.15 0.49 109 (n = 14) Mean 3.85 4.64 0.84 2.16 0.50 110

Std. dev 0.94 0.93 0.18 0.63 0.16 22 Std. dev 2.31 2.91 0.06 0.81 0.10 14

Cast material Interpretive sketches

Min 3.75 3.28 0.94 1.56 0.33 73 Min 1.50 1.75 0.70 0.18 0.10 85

Morphotype I Max 11.70 12.50 1.23 4.48 0.48 92 Morphotype I Max 24.81 26.54 1.10 10.60 0.51 107

(n = 6) Mean 9.11 8.16 1.09 3.33 0.43 84 (n = 18) Mean 6.11 6.70 0.89 2.77 0.39 93

Std. dev 3.30 3.61 0.11 1.15 0.06 7 Std. dev 5.89 6.07 0.11 2.66 0.11 7

Min 2.27 2.76 0.69 1.14 0.37 76 Min 1.98 1.75 0.57 0.73 0.35 82

Morphotype II Max 7.23 8.03 0.92 3.29 0.44 111 Morphotype II Max 12.25 16.41 1.13 5.95 0.57 132

(n = 7) Mean 3.59 4.31 0.83 1.75 0.41 96 (n = 16) Mean 3.83 4.51 0.88 1.95 0.45 101

Std. dev 1.66 1.75 0.09 0.71 0.02 14 Std. dev 2.37 3.26 0.15 1.13 0.07 13

Field and cast material Photographs and sketches

Min 3.75 3.28 0.94 1.55 0.33 73 Min 1.50 1.75 0.70 0.18 0.10 85

Morphotype I Max 11.70 12.50 1.23 4.48 0.48 92 Morphotype I Max 24.81 26.54 1.10 10.60 0.51 107

(n = 9) Mean 7.54 6.99 1.08 2.89 0.43 83 (n = 19) Mean 6.11 6.70 0.89 2.77 0.39 93

Std. dev 3.52 3.57 0.10 1.21 0.05 7 Std. dev 5.89 6.07 0.11 2.66 0.11 7

Min 1.47 2.76 0.38 0.62 0.16 76 Min 1.97 1.75 0.57 0.73 0.27 82

Morphotype II Max 7.23 8.03 1.17 4.17 0.96 160 Morphotype II Max 12.25 16.41 1.13 5.95 0.65 139

(n = 30) Mean 3.83 4.42 0.87 2.05 0.47 106 (n = 30) Mean 3.84 4.57 0.86 2.05 0.47 105

Std. dev 1.12 1.14 0.16 0.66 0.14 21 Std. dev 2.30 3.04 0.12 0.98 0.09 14

https://doi.org/10.1371/journal.pone.0293021.t001

PLOS ONE Oldest bird-like footprints

PLOS ONE | https://doi.org/10.1371/journal.pone.0293021 November 29, 2023 9 / 17

https://doi.org/10.1371/journal.pone.0293021.g005
https://doi.org/10.1371/journal.pone.0293021.t001
https://doi.org/10.1371/journal.pone.0293021


preserves digit IV’s metatarsophalangeal pad in line with digit III. Anomoepus digit impres-

sions are cigar-shaped with LII < LIII< LIV and the outer digits have moderate total digit

divarication (~ 68˚). Furthermore, Morphotype I trackways preserve pace angulations and

inward track rotations consistent with Anomoepus [55].

When considering measured parameters (TL/TW vs II^IV), Morphotype I is indistinguish-

able from Morphotype II, but generally preserves lower total digit divarication, which is most

clearly seen when considering field and cast material (Fig 5). Morphotype I field and cast mate-

rial TL/TW and II^IV coincides with Anomoepus, while the historical photographs and pub-

lished illustrations depict forms that are wider with more splayed digits than Anomoepus.
When considering landmark-based principal component analysis which accounts for more of

the track morphology, Morphotype I predominantly plots in the same quadrant as Anomoepus
and Kayentapus (Fig 5). This quadrant is most strongly influenced by landmarks 1, 3 and 4,

directly related to the digit II and IV ends i.e., track width, “heel” and total digit divarication.

Although in the same quadrant, Morphotype I morphospace does not coincide with Anomoe-
pus or Kayentapus i.e., Morphotype I is distinct from Anomoepus and Kayentapus. The holo-

type P. pilulatus [9] plots within the Morphotype I morphospace; however, Morphotype I

never preserves hallux impressions nor a pronounced digit III metatarsophalangeal pad and

does preserve defined digital pad impressions which is dissimilar from P. pilulatus.
Based on Ellenberger’s works, some authors consider Trisauropodiscus to be a junior syno-

nym of Anomoepus [e.g., 21], while others [25], several of whom have recently documented

new field specimens [e.g., 12, 23, 26], have argued Trisauropodiscus is a distinct ichnotaxa. It is

worth noting that in Ellenberger’s original report on the Maphutseng tracksite [47], he noted

that the small tridactyl tracks resembled Anomoepus but still considered them as distinct. Our

principal component analysis supports Ellenberger and these more recent authors who posit

Trisauropodiscus is distinct from Anomoepus.

Morphotype II

Morphotype II tracks are documented from the Maphutseng field ichnosite, cast material, his-

torical photographs, and interpretive sketches (Figs 1, 4 and 5; Table 1; S1 Fig; S1 and S2

Tables). At Maphutseng, the high density, (45 tracks preserved on a 90 cm by 65 cm slab),

asymmetrical tracks are preserved as epireliefs. Although some of the tracks may be penetra-

tive, it is unlikely the case for the measured tracks as they do not appear to have exaggerated

depth differences (all tracks are shallow) and have consistent morphological parameters within

a single site and across sites of variable age (Table 1; S1 Fig; S2 Table). Morphotype II tracks

preserved at the Maphutseng field ichnosite are small (track length< 5.5 cm), wider than lon-

ger (TL/TW of 0.88±0.18), with slender digits which taper to sharp clawed tips. Digital pad

impressions are rarely preserved, and when present, they are indistinct (e.g., track 17 digit III;

S1 Fig). The tracks are preserved either as discrete digit impressions (where LII<LIV<LIII) or

with a merged, V-shaped proximal “heel” where proximal digit IV is offset from the central

axis of digit III. The outer digits are widely splayed, with an average total digit divarication of

109˚, reaching a maximum of 160˚. A single step (tracks 20 and 21) is preserved at Maphut-

seng, with the tracks oriented parallel to the step midline (S1 Fig). Morphotype II cast materi-

als have comparable morphologies to the field material (average TL/TW of 0.83±0.09 vs 0.88

±0.18, DP/TW of 0.41±0.02 vs 0.49±0.16, and II^IV 96˚ vs 109˚; Table 1), though a single

larger track is documented (track 39, repository A# 48,2, with TL of 7.2 cm; S1 Fig). Tracks

from historical photographs and the interpretive sketches have morphologies and measured

parameters comparable to the field and cast material: average TL/TW of 0.86±0.12 vs 0.87

±0.16, DP/TW of 0.47±0.09 vs 0.47±0.14 and average II^IV of 105˚±14˚ vs 106˚±21˚, though a
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single larger track is documented in the photographs (TL of 11. 74 cm; Table 1; S2 Table). His-

torical photographs from Maphutseng were matched to tracks preserved in the field (S1 Fig);

however active local brick making has destroyed much of the track-bearing surface. It is

important to note that tetradactyl Morphotype II tracks are depicted in the interpretive

sketches (e.g., track 62) but are not observed in the field material or cast material. Ellenberger

[17] noted apparent hallux impressions for T. aviforma at Maphutseng, and we have matched

one of the tracks (his plate 15) to our field material (S1 Fig)–it is our interpretation that in this

example the feature close to the heel is not a hallux impression. Morphotype II trackways are

exclusively known from the interpretive sketches: most of the tracks have an inward rotation

(average -15˚), with high pace angulations (average 158˚) and stride length up to 10 times the

track length (S1 Fig; S3 Table).

The small track lengths, slender digits and wide digit divarication of Morphotype II resem-

bles Gruipeda [22], known in the stratigraphic record since the Late Cretaceous. Gruipeda is

defined as having three forward facing digits (with a fourth backwards facing hallux), interdigit

angles less than 70˚ (II^III and III^IV), with an absence of webbing and, where present, a digi-

tal pad formula of 2:2:3:4. G. dominguensis [22] is small (track length< 5 cm) and wide (TL/

TW of 0.7–0.9), and can be preserved as tridactyl or tetradactyl (three forward facing digits

with a fourth backward facing hallux). Digit II is the shortest and digit III is the longest

(LII< LIV < LIII), with a large total interdigit divarication angle of 90–135˚ (II^IV). Bipedal

G. dominguensis trackways comprise tracks that are parallel or inwardly rotated relative to the

midline, with high pace angulations (150˚ to 182˚) and stride lengths up to 5 times the track

length. Morphotype II is rarely preserved with a hallux impression but the forward-facing

track morphologies are consistent with Gruipeda which is attributed to an avian trackmaker.

When considering conventional TL/TW vs II^IV biplots, Morphotype II is highly variable

and coincide with Morphotype II (Fig 5B). The TL/TW and II^IV ranges of Morphotype II

are indistinguishable from recently reported Jurassic Trisauropodiscus and Cretaceous avian

ichnogenera, with minor Morphotype II tracks overlapping with Anomoepus. When consider-

ing landmark-based principal component analysis which accounts for more of the track mor-

phology, Morphotype II occupies the same morphospace as younger Middle Jurassic

Trisauropodiscus reported from North Africa and various Cretaceous ichnotaxa attributed to

avians (Fig 5C). These morphospace quadrants are most strongly influenced by landmarks

3–8, which capture digit IV ends and digit width; these ichnotaxa are typified by their narrow

digits and wide total digit splay. The Morphotype II morphospace only partially overlaps with

recent reports of Trisauropodiscus from Early Jurassic strata in Lesotho.

The strong resemblance of Morphotype II to established avian ichnogenera and their clear

distinction from classical ornithischian and theropod tracks, which is now reinforced by geo-

metric morphometric analyses, supports the original avian affinity of Trisauropodiscus origi-

nally proposed by [15, 16, 17, 18, 19, 20].

Discussion

Our reassessment of Ellenberger’s Trisauropodiscus material shows that: 1. There are two dis-

tinct Trisauropodiscus morphotypes and all erected species cannot be synonymized with

Anomoepus. It is worth noting, that recently reported Trisauropodiscus from the Lower [23]

(Lesotho) and Upper Jurassic [12] (Morocco) are also considered morphologically distinct

from Anomoepus by their respective authors, which is supported by our landmark-based prin-

cipal component analysis (Fig 5C); 2. Our Trisauropodiscus Morphotype II has a convincingly

avian affinity but is not distinctly avian, as it lacks a well-developed digit III metatarsophalan-

geal pad and preserves no direct evidence of associated hallux impressions, and; 3. These bird-
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like Trisauropodiscus tracks are known from multiple ichnosites across the Late Triassic to the

Early Jurassic of southern Africa (with c. 215.4-Ma-old [29] Morphotype II tracks documented

at the Maphutseng field ichnosite).

Basal birds and dinosaurs co-existed in time and their tracks are often preserved on the

same ancient tracking surfaces [25, 56]. Bird and non-avian dinosaur tracks have similar mor-

phologies, and although a consensus has not been reached, criteria have been proposed and

are commonly used, to distinguish the two [11, 22, 25, 57]. Morphotype II preserves the fol-

lowing bird-like characteristics: 1) an overall resemblance to modern bird tracks; 2) small size

(length< 7.5 cm); 3) wider than long tracks; 4) slender digits with indistinct pad impressions;

5) large total digit divarication angles (typically II^IV> 100˚), and 6) an inward rotation of

tracks relative to the trackway midlines. Additional site-wide features often considered to

strengthen an avian interpretation [22, 25], which are observed for Morphotype II track-bear-

ing palaeosurfaces, include: 1) a high track density; 2) a lack of preferred track orientation, and

3) an association with invertebrate traces. However, these characteristics are not exclusive to

avians and are also known from dinosaur tracksites.

Identifying a specific tracemaker for these Late Triassic to Early Jurassic footprints is chal-

lenging, despite their morphological characteristics, such as slender digits and large total digit

divarication angles, suggesting a bird-like foot. For example, more recently, some authors have

suggested a small, gracile theropod tracemaker such as coelurosaurs (including Paraves [26])

for Trisauropodiscus while others attribute the tracks to ornithomimipodids (ornithomimids

[12]). Given the evolutionary patterns among tetrapods, it is also possible that unrelated Meso-

zoic groups, such as tridactyl archosaurs, developed convergent pedal morphology leading to a

bird-like foot e.g., Poposaurus gracilis resembles a theropod track [58]. Considering the spatio-

temporal distribution of the track-bearing surfaces (Fig 1), three subgroups of tridactyl archo-

saurs—ornithischians, theropods, and basal birds—could be the putative tracemakers.

However, it is also possible that an unknown facultatively tridactyl archosaur could have

potentially produced the tracks. Ornithischian and theropod body fossils are present in the

Mesozoic rock record of southern African, and while the former is well-documented [59] the

latter is scarce [60, 61], with both regularly being ascribed as the trackmakers of various tridac-

tyl tracks in the region [23, 31, 43, 44, 45, 62 – 68]. The morphological features (e.g., digit

width, total digit divarication angle) of the bird-like Trisauropodiscus are incompatible with

these local, contemporaneous, similarly sized tridactyl tracks [23, 64] and it is unlikely they

were registered by the same tracemaker.

Globally, the only Late Triassic body fossil specimen posited to be bird-like is Protoavis

[13], but this assessment is based on ambiguous material [3, 14]. Neornithes first appear in the

fossil record in the latest Cretaceous, and their presence is contemporaneously noted in both

the skeletal [69] and trace fossil records [56]. Therefore, it is likely that Morphotype II tracks

were made by a yet-to-be-found tridactyl archosaur. That these tracks of southern Africa, dat-

ing to the Late Triassic, so strongly resemble Cenozoic and modern bird tracks substantiates

the converging pedal morphology of Late Mesozoic archosaurs [2, 8] and firmly shows that the

origin of bird-like foot morphology is at least ~210 million years old [29].

Supporting information

S1 Fig. Photographs, interpretive outlines and false -colour depth maps of Late Triassic–

Early Jurassic Elliot Formation Trisauropodiscus field material, cast material (housed at

Morija Museum and Archives and Université de Montpellier) and published illustrations

(12, 13) considered in this study. Based on distinct morphological characteristics, the Trisaur-
opodiscus tracks can be subdivided into two distinct Morphotypes (I and II, see S2 Table).
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Published illustrations and photographs are included under a CC BY license with permission

from the GSSA and Palaeovertebrata, original copyright [1970 and 1974, respectively].

(PDF)

S2 Fig. Morphological comparison of southern African Trisauropodiscus morphotypes

with established ichnogenera attributed to avian, ornithischian and theropod trackmakers

(see Fig 3B). Corresponding track numbers are included (see S1 Fig).

(JPG)

S1 Table. Trisauropodiscus specimens (published illustrations and cast material collected

by Paul Ellenberger) in the Elliot Formation (main Karoo Basin) from four different sites

in Lesotho. For location map, see Fig 2; and for additional details see S1 Fig, S2 Table. For 3D

photogrammetric modelling data, see supplementary material here: https://figshare.com/s/

37f1fc1924aa51828d0e) Abbreviations: UoM–Université de Montpellier, MM&A–Morija

Museum and Archives, lEF–lower Elliot Formation, uEF–upper Elliot Formation. Published

illustrations are included under a CC BY license with permission from the GSSA and Palaeo-

vertebrata, original copyright [1970 and 1974, respectively].

(DOCX)

S2 Table. Track measurement data of Trisauropodiscus field material, cast material and

published illustrations considered in this study. Blank fields indicate that the specific param-

eter, defined in Fig 1, could not be measured due to the absence of the necessary feature or

unclear track morphology. For field photographs, cast material, published illustrations and his-

torical photographs of the tracks, see S1 Fig; for location map, see Fig 2; Abbreviations: TL–

Track length, TW–Track width, II^IV–total digit divarication, lEF–lower Elliot Formation,

uEF–upper Elliot Formation.

(XLSX)

S3 Table. Trackway measurement data for Trisauropodiscus cast material and published

illustrations considered in this study. Blank fields indicate that the specific parameter,

defined in Fig 1, could not be measured due to unclear track or trackway morphology. For cast

material and published illustration trackways, see S1 Fig; for location map, see Fig 2.

(XLSX)

S4 Table. Summary statistics of track orientation data. Track orientation is measured from

field material, cast material and historical photographs. Abbreviations: Map–Maphutseng. See

Fig 2 for site localities.

(XLSX)

S5 Table. Detailed track orientation data considering >150 tracks from field material, cast

material and historical photographs. Abbreviations: Map–Maphutseng. See Fig 2 for site

localities.

(XLSX)
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