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The earliest sauropodomorphs were small omnivores (less than
10 kg) that first appeared in the Carnian. By the Hettangian,
early branching sauropodomorphs (EBSMs) were globally
distributed, had variable postures, and some attained large
body masses (greater than 10 tonnes). Small-bodied EBSMs
like Massospondylus carinatus (less than 550 kg) persist at least
until the Pliensbachian at nearly all dinosaur-bearing
localities worldwide but are comparatively low in alpha
diversity. One potential reason for this is competition with
other similarly sized contemporary amniotes, including
Triassic gomphodont cynodonts, Jurassic early branching
ornithischians, herbivorous theropods and potentially early
crocodylomorphs. Today’s herbivorous mammals show a
range of body size classes (less than 10 g to 7 tonnes), with
multiple species of small herbivorous mammals (less than
100 kg) frequently co-occurring. Comparatively, our
understanding of the phylogenetic distribution of body mass
in Early Jurassic strata, and its explanatory power for the
lower thresholds of body mass in EBSMs, needs more data.
We osteohistologically sectioned a small humerus, BP/1/
4732, from the upper Elliot Formation of South Africa. Its
comparative morphology and osteohistology show that it
represents a skeletally mature individual of a new
sauropodomorph taxon with a body mass of approx.
75.35 kg. This makes it one of the smallest known
sauropodomorph taxa, and the smallest ever reported from a
Jurassic stratum.
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1. Introduction

Sauropodomorph dinosaurs were the largest land-dwelling vertebrates of all time, evolving body masses
estimated at more than 90 tonnes [1]. However, the earliest sauropodomorphs that first evolved in the
Carnian (233–231 Mya) were small omnivores (less than 15 kg), such as Saturnalia tupiniquim with a
body mass of 11 kg [2]. By the Early Jurassic (190–199 Mya), early branching sauropodomorphs
(EBSMs) were globally distributed, had a range of postures and evolved masses exceeding 10 tonnes
[3–5]. This exceptionally rapid evolutionary increase in body mass has been extensively studied (e.g.
[1]) and is potentially explained by a cascade model [6,7], where many different interacting factors
reinforced lineage-specific evolutionary size increases. Smaller EBSMs (less than 1 tonne) are
comparatively rare, although taxa like Massospondylus carinatus (adult body mass approx. 550 kg), and
Adeopapposaurus mognai (immature body mass approx. 55.89 kg), persist at least until the
Pliensbachian at nearly all dinosaur-bearing localities worldwide, and in the case of Massospondylus
carinatus can be locally superabundant (table 1; electronic supplementary material, appendices 1 and 4
for the source of measurements and body masses). One potential reason for the scarcity of smaller
EBSMs is interspecific competition and niche occupation by other herbivorous groups, including
gomphodont cynodonts (e.g. Scalenodontoides, greater than 100 kg) in the Late Triassic, early branching
ornithischian dinosaurs (e.g. Heterodontosaurus, less than 10 kg) as well as potentially herbivorous
early branching crocodyliforms in the earliest Jurassic [14–19], and secondarily herbivorous theropods
(e.g. Limusaurus inextricabilis, approx. 20 kg) in the Late Jurassic [2,20]. As a modern analogue to
dinosaur-dominated ecosystems, herbivorous mammals show a range of body masses from less than
10 g to 7 tonnes, with high levels of sympatry for species with low-to-intermediate body masses
[21,22]. By this comparison, our understanding of the lower thresholds of body mass in EBSMs is
clearly in need of more data.

During our recent investigations of EBSM growth strategies, we osteohistologically sectioned a small
humerus, BP/1/4732, collected by Prof. James Kitching in 1978 in Lower Jurassic beds of the Free State of
South Africa. It was provisionally referred to as Massospondylus carinatus in comparative studies with
Anchisaurus polyzelus [23] and Arcusaurus pereirabdalorum [24]. The specimen is approximately 49% the
size of the largest known Massospondylus carinatus specimen (BP/1/4934), which, if these historical
referrals are correct, suggests it is an immature individual. In this study, we show that the humerus
bears autapomorphic features questioning this referral, and that it represents a skeletally mature
individual.
2. Material and methods
2.1. Locality and horizon
BP/1/4732 was collected from the upper Elliot Formation of the cadastral unit Cornelia 1204, in the
Thabo Mofutsanyana District (previously the Bethlehem District) of the eastern Free State of South
Africa. This falls within the Massospondylus Assemblage Zone [25,26].
2.2. Osteohistological analysis
A destructive sampling permit (permit number 2643) was acquired from the South African Heritage
Resources Agency (SAHRA). Osteohistological sections were made at the National Museum,
Bloemfontein, using methods from Botha-Brink et al. [27] and Lamm [28]. Complete sections were
taken as close to the midshaft as possible. We counted double and triple lines of arrested growth
(LAGs) as a single unit if vascularization was absent between them. The nomenclature used for
descriptions was taken from the recently published textbook edited by de Buffrénil et al. [29] as well
as from Prondvai et al. [30].
2.3. Body mass estimate
Body mass correlates strongly to minimum midshaft stylopod circumference [5,13,31]. Based on the
anatomy of the specimen strongly resembling that of other bipedal EBSMs, we assume bipedality in
BP/1/4732. The body mass of BP/1/4732 was estimated using a regression of minimum humeral
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3. Results
3.1. Morphological description
BP/1/4732 is a near-complete left humerus (figure 1). It is missing the proximolateral portion and the
anteriormost margin of the deltopectoral crest. The internal tuberosity projects medially at a near-
right-angle with the diaphyseal long axis, with its ventral margin being horizontal and forming a
distinct angle with the distolaterally sloping medial margin of the humerus. This differs markedly
from other EBSMs including Massospondylus carinatus [11], Ngwevu intloko [4], Coloradisaurus brevis
[32], Adeopapposaurus mognai [8], Kholumolumo ellenbergerorum [10], Sarahsaurus aurifontanalis [12],
Mussaurus patagonicus [33,34] and Lufengosaurus huenei [35]. In these taxa, the internal tuberosity
projects proximomedially, with the ventral margin being continuous with that of the medial margin of
the humerus (see electronic supplementary material, appendix 2). In medial view, the internal
tuberosity of BP/1/4732 is anteroposteriorly robust compared to other EBSMs. Another distinctive
feature of BP/1/4732 is the ovoid boss on the anterior surface of the proximal end of the humerus.
This is not present in any other described EBSM and likely represents an autapomorphy of the taxon.

The deltopectoral crest of BP/1/4732 projects anteriorly and extends distally to 52.5% of the overall
proximodistal length of the bone. This is similar to most other EBSMs, including Ngwevu intloko [4],
Coloradisaurus brevis [32], Adeopapposaurus mognai [8], Kholumolumo ellenbergerorum [10], Sarahsaurus
aurifontanalis [12] and Lufengosaurus huenei where the deltopectoral crest extends distally to between
45 and 50% the overall length of the humerus. In skeletally mature Massospondylus carinatus, the crest
extends distally to 60% the length of the humerus. In Mussaurus patagonicus, the crest arises abruptly
from the proximolateral margin of the humerus and extends distally for only 37% of the overall
proximodistal length of the humerus in mature individuals [33,34].

In BP/1/4732, the distal ulnar condyle extends farther medially than the radial condyle, which
extends laterally. The distal margins of both condyles are aligned, forming a continuous, linear,
horizontal distal margin of the humerus. This is similar to the distal humerus of Adeopapposaurus
mognai [8] and Mussaurus patagonicus [34] but differs from the co-occurring Massospondylus
carinatus [11], and from Coloradisaurus brevis [32], Kholumolumo ellenbergerorum [10], Sarahsaurus
aurifontanalis [12], Lufengosaurus huenei [35] and Arcusaurus pereirabdalorum [24] where the ventral
margin of the ulnar condyle rises proximomedially. In Anchisaurus polyzelus, the ventral margin of
the radial condyle extends proximolaterally [36]. The ratio of the mediolateral diameter of the
humeral midshaft to the mediolateral width of the distal end of the humerus is approximately 0.36
in BP/1/4732, similar to 0.37 in Kholumolumo ellenbergerorum [10], Coloradisaurus brevis [32] and
Adeopapposaurus mognai [8], as well as in Mussaurus patagonicus (0.34). By contrast, the mediolateral
midshaft diameters of Ignavusaurus rachelis, Jingshanosaurus xinwaensis, Sarahsaurus aurifontanalis
and Massospondylus carinatus are relatively more robust (0.44, 0,45, 0.54 and 0.63, respectively)
[9,11,12,37].

3.2. Osteohistological description
The humeral cross-section of BP/1/4732 is complete and well preserved (figure 2; electronic
supplementary material, appendix 3). A large medullary cavity is surrounded by a relatively
narrow, compact cortex. The innermost medullary cavity is clear, but thin spindle-shaped bony
trabeculae thread through the perimedullary region, gradually linking to form large resorption
cavities in this region. Smaller, but abundant resorption cavities as well as secondary osteons
(demarcated by cement lines) extend into the inner and mid-cortex. The primary bone tissue of the
innermost cortex has been almost completely destroyed by secondary remodelling. The mid- and
outer cortex comprise a woven-parallel complex (i.e. woven-fibred bone matrix associated with
primary osteons of parallel-fibred bone, Buffrénil et al. [29]). The woven bone is patchy and does not
dominate the cortex. The osteocyte lacunae become increasingly flattened and organized towards
the sub-periosteal surface to form parallel-fibred bone. The bone tissue is interrupted by 15 LAGs
indicating temporary cessations in growth. Double and triple LAGs are observed throughout the
cortex. The spacing between these growth marks decreases towards the bone periphery. In the



(a) (b)

(c) (d)

hh

b
it

dpc

entc

uc

it

uc
rc40 mm

cuf

dpc

cuf

rc rc

of

entc

uc

dpc

it

Figure 1. Left humeral morphology of BP/1/4732. (a) BP/1/4732 in anterior view. (b) BP/1/4732 in posterior view. (c) BP/1/4732 in
medial view. (d ) BP/1/4732 in lateral view. Abbreviations: b, boss; cuf, cuboid fossa; dpc, deltopectoral crest; entc, entepicondyle;
hh, humeral head; oc, olecranon fossa; rc, radial condyle; it, internal tuberosity; uc, ulnar condyle.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221565
5

outermost cortex, a maximum of 11 closely spaced LAGs can be seen. Vascularization is almost non-
existent in this region. Although the number of closely spaced LAGs differs around the cortex, it
does meet the criteria (almost avascular region with numerous closely spaced LAGs) of a well-
developed External Fundamental System (EFS), indicating that the individual had reached the
asymptotic growth phase at the time of death.

A similarly sized Massospondylus carinatus humerus (NMQR 3055, humeral circumference of 72 mm,
53.27% of the largest known Massospondylus carinatus individual) preserves four LAGs, has an open
medullary cavity with no evidence of trabeculae, the main tissue type is woven-parallel complex, and
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the entire cortex is highly vascularized with a mix of laminar and longitudinally arranged canals [38].

The only Massospondylus carinatus specimen that preserves an EFS is BP/1/4928 (femoral
circumference of 160 mm, 74.77% of the largest known Massospondylus carinatus individual), although
only in the zeugopodial bones (tibia, fibula), and not in the preserved stylopodial bone (femur). These
elements are also highly remodelled in BP/1/4928 with the presence of trabeculae in the
perimedullary region, and 7–9 visible LAGs [38].

In Mussaurus patagonicus, specimens preserving an EFS include the femur of MLP 61-II-20-26 (47.8%
of the largest knownMussaurus patagonicus individual), the femur of MLP 61-III-20-23 (69% of the largest
known Mussaurus patagonicus individual) and the fibula of MLP 61-III-20-22 (100% of the largest
Mussaurus patagonicus individual) [39]. The first of these specimens does not preserve Mussaurus
patagonicus autapomorphic features. Based on the text descriptions from Cerda et al. [39], the femur
MPM-PV 1829 (6.7% of the largest known Mussaurus patagonicus individual), the humerus MPM-PV
1821 (32% of the largest known Mussaurus patagonicus individual), the femur MLP 68-II-26-1 (52.5% of
the largest known Mussaurus patagonicus individual), the femur MPM-PV 1902 (64.4% of the largest
known Mussaurus patagonicus individual) and the femur MLP 61-III-20–23 (69% of the largest known
Mussaurus patagonicus individual) mention trabeculae in the perimedullary region. However, of these
specimens only the latter preserves autapomorphic Mussaurus patagonicus features [39] and the
descriptions are not detailed enough for us to compare the extent of the cancellous trabeculae into the
medullary cavity (only the humerus MPM-PV-1821 medullary cavities is illustrated). A broad
medullary-cortical transition zone is unusual in EBSMs, which typically exhibit a distinct, clearly
demarcated and open medullary cavity. The presence of abundant perimedullary trabeculae in BP/1/
4732 may be an indication of advanced ontogenetic age or it represents a lineage-specific feature,
given its rarity in EBSMs in general.

3.3. Size comparisons
Minimum humeral circumference at the midshaft versus body mass in bipedal sauropodomorphs are
significantly correlated (log10[body mass] = 2.6635 × log10 [humeral circumference] – 2.9693; sample
size of 8 with multiple R2 = 0.9924 and p-value = 1.38 × 10−7). This regression excludes Kholumolumo
ellenbergiensis, which is known from a bone bed with unclear forelimb/hindlimb association. The
estimated body mass of BP/1/4732 is therefore 75.35 kg (see electronic supplementary material,
appendix 1). Based on linear measurement comparisons of closely related EBSMs, BP/1/4732 is the
smallest adult EBSM of the Early Jurassic (table 1; electronic supplementary material, appendix 4).
Based on humeral minimum circumference measurements (HC), BP/1/4732 (HC = 66 mm) is smaller
than Coloradisaurus brevis (HC = 143.06 mm), Kholumolumo ellenbergerorum (HC = 262 mm),
Lufengosaurus huenei (HC = 137 mm), Massospondylus carinatus (HC = 135 mm), Mussaurus patagonicus
(HC = 154.08 mm), Ngwevu intloko (HC = 80 mm), Sarahsaurus aurifontanalis (HC = 98.72 mm),
Riojasaurus incertus (HC = 229 mm, McPhee et al. [5] ) and Anchisaurus polyzelus (HC = 108 mm). Based
on humeral proximodistal length (HL), BP/1/4732 (HL = 160 mm) is smaller than Seitaad ruessi (HL =
216.4 mm) and Jingshanosaurus xinwaensis (HL = 450 mm). Based on cranial anteroposterior length
(CL), Leyesaurus marayensis (CL = 147.4 mm) and Chuxiongosaurus lufengensis (CL = 340 mm) are larger
than Ngwevu intloko (CL = 133.87 mm), which is larger than BP/1/4732 based on the aforementioned
humeral measurements. Based on femoral proximodistal length (FL), Glacialisaurus hammeri (FL =
600 mm) and Eucnemosaurus entaxonis (FL = 535 mm, McPhee et al. [40]) are larger than Coloradisaurus
brevis (FL = 514.3 mm) which is larger than BP/1/4732 based on the aforementioned humeral
measurements. The only EBSM taxon that is slightly smaller than BP/1/4732 based on linear
measurements is Adeopapposaurus mognai (immature holotype PVSJ 610, HC = 59 mm). However,
based on the figures in Martínez [8], the maxilla of the referred Adeopapposaurus specimen PVSJ 568 is
approximately 2.3 times the length of PVSJ 610, meaning that the taxon likely grew to be much larger
than BP/1/4732.
4. Discussion
EBSM humeri do not display sufficient salient features to assist in determining the phylogenetic placement
of BP/1/4732. However, based on the relative proportions of the humerus (such as minimum mediolateral
diameter to proximodistal height), it is likely that BP/1/4732 was a bipedal EBSM included within
Massopoda. Higher taxa groupings are not supported by any humeral characters in current
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Figure 2. Sauropodomorph humerus BP/1/4732. (a) Overall transverse section showing a few trabeculae within the medullary
cavity. (b) Overall cortex showing resorption cavities that extend into the mid-cortex. (c) Secondary osteons within the inner
and mid-cortex. (d ) Woven-parallel complex interrupted by LAGs. (e) Same as (d ) in cross-polarized light. ( f ) High
magnification of the EFS. (g) Mid-cortical LAGs and EFS in cross-polarized light. (h) Cortex showing the EFS (bracket) in
polarized light. Arrowheads indicate LAGs. Abbreviations: MC, medullary cavity; PFB, parallel-fibred bone; RC, resorption cavity;
SO, secondary osteon; WPC, woven-parallel complex. Scale bars (a) = 1000 µm, (b,g,h) = 500 µm, (c–f ) = 100 µm.
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sauropodomorph phylogenetic topologies. Any more precise phylogenetic placement is therefore not
possible for BP/1/4732. The tubercle and the internal tuberosity constitute a unique suite of features
indicating that this is likely a new taxon; however, we refrain from naming it here.
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Based on humeral measurements, BP/1/4732 has an estimated body mass of 75.35 kg. The

osetohistological analyses show that bone tissues of the BP/1/4732 humerus represent a fully grown
adult at the time of death, based on the extent of secondary remodelling into the mid-cortex, the
transition to slower growing bone tissue at the sub-periosteal surface, the decreased vascularization
towards the outer cortex and the presence of a well-developed EFS consisting of an almost avascular
region of parallel-fibred bone with 11 closely spaced LAGs.

BP/1/4732 is therefore the smallest confirmed adult EBSM from the Early Jurassic Massopoda
onwards. It is the first mature EBSM taxon with a maximum size lower than 100 kg, with the
second smallest taxon being Ngwevu intloko, which is approximately 1.43 times the size in
estimated body mass at the near-adult stage (i.e. 107.91 kg) [4]. Furthermore, the exact ontogenetic
stages of all of the other EBSM taxa in the comparative dataset are not all known [41], and the
maximum sizes are therefore also unknown (see electronic supplementary material, appendix 5 for
further details on this).

BP/1/4732 increases the maximum body size diversity of Jurassic sauropodomorphs by one order of
magnitude, bringing the total of the latter up to four. This size range is lower than herbivorous
mammal communities today, with the smaller size classes (less than 10 kg) absent in known EBSMs.
Contemporaneous Jurassic herbivorous and omnivorous ornithischian dinosaurs (e.g. Heterodontosaurus
tucki (less than 10 kg) and Lesothosaurus diagnosticus (less than 10 kg)), carnivorous theropod dinosaurs
(e.g. Megapnosaurus less than 30 kg), and herbivorous therapsids (e.g. Tritylodon, less than 15 kg) did
reach close to these smaller body sizes [5,16,42]. However, BP/1/4732 reveals that the sauropodomorph
lineage was still capable of evolving smaller body sizes, which is surprising given the strong directional
trend in EBSM body size evolution [1].
5. Conclusion
Based on morphology and osteohistology, a new species of sauropodomorph from the upper Elliot
Formation of South Africa has been identified. The bone tissues of the humerus BP/1/4732 indicate
that this individual is fully grown with a body mass of 75.35 kg. BP/1/4732 does not represent a
developmentally plastic individual of other known sauropodomorphs such as Plateosaurus or
Massospondylus carinatus because its morphology differs from any other known Jurassic
sauropodomorph. Furthermore, the extensive secondary remodelling and the high number of growth
marks, particularly in the wide, well-developed EFS is conclusive evidence that this individual is
skeletally mature at only 49% the size of the largest known co-occurring Massospondylus carinatus
individual. The discovery of this new small-bodied taxon increases the diversity of Early Jurassic
sauropodomorphs in the upper Elliot Formation and represents the smallest known sauropodomorph
to have lived during the Jurassic.
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