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Abstract

Background: A frontoparietal dome of a large pachycephalosaurid collected from the Upper Cretaceous Hell Creek
Formation in 2001 is identified as Pachycephalosaurus wyomingensis. The specimen features two large oval depressions on
the dorsal surface, accompanied by numerous circular pits on the margin and inner surface of the larger depressions.

Methodology/Principal Findings: In order to identify the origin of these structures, computed tomography (CT) data and
morphological characteristics of the specimen are analyzed and compared with similar osteological structures in fossil and
extant archosaurs caused by taphonomic processes, non-pathologic bone resorption, and traumatic infection/inflammatory
origins. The results of these analyses suggest that the structures are pathologic lesions likely resulting from a traumatic
injury and followed by secondary infection at the site.

Conclusions/Significance: The presence of lesions on a frontoparietal dome, and the exclusivity of their distribution along
the dorsal dome surface, offers further insight into frontoparietal dome function and supports previously hypothesized
agonistic behavior in pachycephalosaurids.
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Introduction

Pachycephalosaurs (Ornithischia: Marginocephalia) [1,2] are a

group of bipedal ornithischian dinosaurs characterized by their

distinctive, greatly thickened cranial dome composed of the fusion

and expansion of the frontals and parietals [3]. These domes are

typically surrounded with ornamental spikes that vary in size

among taxa.

Frontoparietal domes have been hypothesized to have served as

courtship weapons for agonistic competition, much like the

observed behavior in modern Caprinae [4]. This hypothesis has

been supported by finite-element modeling of the physical

capabilities of different taxa of pachycephalosaurids, illustrating

their ability to withstand considerable impact forces [5,6].

The identification of expected injuries, such as fractures and

depressions sustained during such high-impact bouts are conspic-

uously absent in the pachycephalosaurid literature [5,7,8]. While

pathologic features have been speculated in some pachycephalo-

saurid specimens, such as the holotypes of Gravitholus albertus and

Texacephale langstoni [9,10], and unidentified frontoparietal domes

from the San Carlos and Aguja Formations [11], such claims have

been alternatively speculated as taphonomic artifacts [12] or as a

result of non-traumatic bone resorption [13].

This study describes a large frontoparietal dome of Pachycepha-

losaurus wyomingensis collected from the Upper Cretaceous Hell

Creek Formation (Latest Maastrichtian) of Carter County,

Montana in 2001. During preparation, the specimen was found

to exhibit two large depressions on the dorsal surface, accompa-

nied by numerous circular pits on the margin and inner surface of

the larger depressions. Based on computed tomography (CT) data

analyses and comparisons with similar structures in extant and

fossil archosaurs, these features are interpreted as bone pathology

likely resulting from trauma. Because the features present on this

frontoparietal dome specimen are well preserved, and pathology

has not been previously described in Pachycephalosaurus, this

specimen merits a brief description.

Materials and Methods

Locality
The specimen was collected in Carter County, Montana, USA,

approximately 60–70 meters above the base of the Hell Creek

Formation (Latest Maastrichtian), which averages 150 meters in

thickness in southeastern Montana [14]. Exact coordinates of the

collection site are on file at the Burpee Museum of Natural History

(BMR). The frontoparietal dome was found at the base of a

mudstone butte; no other skeletal remains were recovered.

Description
The specimen, BMR P2001.4.5, consists of an isolated

frontoparietal dome (Figure 1). The specimen measures 620 mm

in circumference, 310 mm in length from the rostral end to the

posterior margin of the caudal region, and 132 mm in height. This

is consistent with the average dome dimesions of the Maastrichtian
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pachycephalosaurid Pachycephalosaurus wyomingensis, in which adult

frontoparietal domes average between 260 and 360 mm in length

[15]. The frontoparietal suture is present on the right lateral side

beneath the cortical surface (Figure 1D), though no suture is

apparent on the dorsal surface of the specimen.

Four nominal taxa of pachycephalosaurids have been described

from the Hell Creek Formation: Pachycephalosaurus wyomingensis

(Brown and Schlaikjer, 1943) [16], Stygimoloch spinifer (Galton and

Sues, 1983) [17], Dracorex hogwartsia (Bakker et al., 2006) [18], and

Sphaerotholus buchholtzae (Williamson and Carr, 2002) [19]. The

dorsal surface of BMR P2001.4.5 is smooth, which is a

characteristic of the largest pachycephalosaurid specimens [16]

and lacks the distinctive, regular dimpling found in Sphaerothlous or

polygonal sulci present on smaller domes [19]. Considering its

large size, BMR P2001.4.5 is too broad and large to be attributed

to Stygimoloch, which possesses a smaller, mediolaterally narrow

dome [8]. However, due to the large frontoparietal dome of

Pachycephalosaurus wyomingensis among other pachycephalosaurids,

the large size of BMR P2001.4.5 suggests the specimen is referable

to Pachycephalosaurus [16].

Previous studies have called the validity of Stygimoloch and

Dracorex into question, suggesting that they are younger ontoge-

netic stages of P. wyomingensis [15]. Furthermore, Goodwin and

Horner [15] have suggested that variation in frontoparietal surface

texture may be a factor of ontogeny and dome development.

Regardless of this debate, the nearly complete fusion and closure

of the frontoparietal suture, the massive size of BMR P2001.4.5,

and lack of dorsal surface texturing or sulci suggest that it is a

mature individual and thus maintains its identification as

Pachycephalosaurus wyomingensis.

Systematic Paleontology
Dinosauria Owen, 1842 [20]

Ornithischia Seeley, 1887 [21]

Pachycephalosauria Maryanska and Osmolska, 1974 [22]

Pachycephalosauridae Sternberg, 1945 [23]

Pachycephalosaurinae Sereno, 2000 [2]

Pachycephalosaurus wyomingensis Brown and Schlaikjer, 1943 [16]

Bone Pathology
A series of small erosive pits and two large crateriform

depressions occur on the dorsal surface of BMR P2001.4.5

(Figures 1, 2). The two large depressions are positioned on the

frontal region of the dorsal surface, measure approximately 5 cm

in diameter, and have a maximum depth of 1.6 cm. The inner

surface and marginal rim of the depressions have several smaller

circular pits (Figures 1B, 3A, D) ranging from 1 to 10 mm in

diameter and depth, the more shallow of which possess smooth

surfaces. The larger pits flare where they penetrate into the dome,

resulting in a flask-shaped cross section (Figure 3A), and possess

horizontally oriented canals that extend into the larger depressions

(Figures 1A, 3D). The larger and deeper structures present on

BMR P2001.4.5 penetrate the outer-most cortex of the dorsal

surface, exposing an irregular area of compact bone immediately

above a lower-density band (Figure 3B, C).

Figure 1. BMR P2001.4.5. (A) Dorsal view of calvaria. Scale bar equals
5 cm. (B) Close-up of the peripheral lesions external to the larger
depressions. Scale bar equal 10 mm. (C), Close-up of the marginal slope
of the rostral-most depression. Scale bar equals 10 mm. (D) Right lateral
side of BMR P2001.4.5 showing exposure of the frontoparietal suture
(arrow). r = rostral, c = caudal.
doi:10.1371/journal.pone.0036227.g001

Figure 2. An index drawing of the distribution of lesions. Scale
bar equal 5 cm. r = rostral, c = caudal.
doi:10.1371/journal.pone.0036227.g002

Pathologies in Pachycephalosaurus
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Pachycephalosaurid frontoparietal domes possess a variety of

histological zones dependent on genus and ontogenetic stage [24].

The middle and least dense of these zones, Zone II, occurs in

subadult individuals, and increases in density throughout ontog-

eny. Coring or thin sectioning of BMRP 2001.4.5 was not

permitted; however a series of computed tomography (CT) scans

were conducted to gain further insight into the ontogenetic stage

and depression characteristics within the specimen. The scan was

performed with an Aquilion Toshiba 64-Slice CT scanner at

Rockford Memorial Hospital in Rockford, IL, and conducted at

settings for medical diagnoses of bone pathology (135 kV,

300 mA, 0.5 mm pixel resolution, and 0.5 mm thickness). The

significant thickness and very high density of BMR P2001.4.5

caused considerable noise in the CT images, which decreased

some of the examination detail. However, this did not prevent

examination and characterization of the important structural

features of the depressions. The raw CT data are archived at the

Burpee Museum of Natural History. The frontoparietal dome was

also digitized into a 3D model using a NextEngine Desktop 3D

Scanner (Figure S1).

While histologic sections could not be produced for this study,

BMR P2001.4.5 was compared with similar osteological structures

in fossil and extant archosaurs in order to infer the cause of the

depressions and erosive pits. Explored causes include taphonomic

alteration (i.e. insect modification and bone weathering), non-

traumatic bone resorption, and traumatic origins (i.e. injury and

subsequent infection).

Results

Taphonomic Alteration
Taphonomic alteration resulting from biostratinomic and

diagenetic processes is commonly responsible for erosional features

in bone [25–27]. Indentations and borings in bones due to early

biostratinomic processes such as scavenging [28] and insect

modification [26] are common in the vertebrate fossil record.

However, such features can usually be attributed to these origins

by specific traces such as parallel puncture and drag marks in

scavenged bones [29] and mandible marks from insect modifica-

tion [26]. The absence of these traces on BMR P2001.4.5 suggests

that post-mortem scavenging and insect damage are not likely

etiologies.

Previous occurrences of erosive and pitted structures on

pachycephalosaurid crania have been regarded as a result of

taphonomic weathering and erosion due to subaerial exposure.

Tanke and Farke [13] noted possible pitting in frontoparietal

domes of Stegoceras, but suggested the features might have been due

to water-wear. Sullivan [30] also commented on the possibility of

taphonomic effects as cause for features present in the holotypes of

Gravitholus albertus and Prenocephale edmontonensis. The effects of

weathering and erosion on both ancient and modern bone have

been thoroughly described [25,31–33]. Parallel cracks and

polygonal fracture patterns commonly characterize subaerially

exposed and eroded bone surfaces [25,33]. The surface of BMR

P2001.4.5 lacks these characteristics, suggesting that the depres-

sions and pits are not likely the result of extensive subaerial

exposure and erosion.

Non-Traumatic Bone Resorption
Lesions appearing in the squamosal fenestrae of numerous

specimens of chasmosaurine ceratopsids have been attributed to

bone resorption [13]. Bone remodeling or ‘‘punched out lesions’’

(POLs) described in ceratopsians usually occur in thin regions of

the squamosal, on both internal and external bone surfaces, and

the lesions exhibit smooth surfaces [13]. The structures on BMR

P2001.4.5 exhibit irregular lesion surfaces that extend into deeper

bone tissues, unlike the smooth surfaces in POLs. Furthermore,

the massive size of BMR P2001.4.5 is also inconsistent with POLs,

such as those commonly seen in thin ceratopsian squamosals and

parietals. This suggests that non-traumatic bone resorption is not a

likely source of the depressions.

Trauma
Lesions in bone due to injury and disease have been well

documented, and may best explain the origins of the lesions in

BMR P2001.4.5. Osteomyelitis is the infection of bone and bone

marrow and can be classified as acute, subacute or chronic.

Chronic osteomyelitis is a severe, persisting infection of bone and

bone marrow, and can be the result of trauma to the bone itself or

spread from adjacent soft tissue infection. An anatomic classifica-

tion of chronic osteomyelitis has been proposed by Cierny and

Mader [34] (Table 1).

The acute phase of osteomyelitis generally does not show

radiographic abnormalities. Findings of acute or subacute

osteomyelitis, which is commonly bacterial or fungal in origin,

Figure 3. CT images of BMR P2001.4.5. A. Sagittal image showing a
focal, deep penetrating lesion in the dorsal surface. B. Sagittal MIP
(maximum intensity projection) reformatted image of the irregular
surface of the large depressions. C, The surface of the depression
possesses a high-density surface above a lower density band. D,
Coronal, and E, sagittal images of the peripheral lesions at the margin of
the larger central pathologies on the dorsal surface. r = rostral,
c = caudal.
doi:10.1371/journal.pone.0036227.g003

Table 1. Anatomic classification of chronic osteomyelitis
(After Cienry and Mader, 1984).

Type 1 Endosteal or medullary lesion.

Type 2 Superficial osteomyelitis limited to the surface.

Type 3 Localized, well-marked lesion with sequestration and cavity
formation.

Type 4 Diffuse osteomyelitis lesions.

doi:10.1371/journal.pone.0036227.t001

Pathologies in Pachycephalosaurus
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include periosteal reaction, cortical irregularity and demineraliza-

tion, while findings of chronic osteomyelitis include thick, sclerotic,

irregular bone, and an elevated periosteum [35].

If a wound is present and shows signs of infection, then any

exposed bone in the bed of the wound is considered infected. An

open fracture, one in which there is bone exposed to the outside

environment, is at increased risk for development of superimposed

infection. The amount of overlying soft tissue on pachycephalo-

saurid domes is unknown but the supposition that it was minimal

[5] would lead to a higher likelihood of direct contamination.

Subsequent ongoing exposure to the surrounding environment

would logically provide additional opportunity for contamination.

Open fractures in the human medical literature are classified

based on the mechanism of injury, degree of soft tissue damage,

fracture configuration and level of contamination [36]; the

incidence of infection is influenced by the type of open fracture.

The lesions present on BMR P2001.4.5 correlate well with the

higher level of the classification scheme, Type III – B in which the

fracture is associated with prominent injury to (or loss of) soft

tissue, periosteal stripping and exposure of bone, and massive

contamination [37]. Any possible comminuted fracture fragments

could have left the fracture site immediately as the result of the

force applied or could have fallen from the parent bone in a

delayed fashion. Over time, infected bone fragments (i.e.

sequestra) can be ejected from a site of chronic osteomyelitis

through a cloaca, or resorbed [35].

The CT images show chronic changes involving the surface of

the concave bone lesion where the margins are smooth and

rounded compatible with healing (Figure 3B–E). The expected

thick, sclerotic nature of bone tissue seen with chronic osteomy-

elitis may be masked by the nature of the particular bone anatomy

for pachycephalosaurids [22]. However, the expected irregularity

of the floor of the lesion is well demonstrated in BMR P2001.4.5.

These irregular floors show a varying thickness of higher density

bone over a rarefied zone which does not exist at the same depth

elsewhere in the specimen, consistent with woven osseous

remodeling and overlying healing new bone (Figure 3C). A few

small rounded concavities penetrate the bone surface at the

periphery of the larger defect (Figures 3D, E). Their more focal

nature is characterized by acute margins consistent with localized

erosions. These characteristics suggest the lesions are of traumatic

etiology with superimposed, ongoing infection.

Discussion

Evidence of trauma and pathology are relatively common on

dinosaur bones and are frequently used for behavioral inferences

[29,38,39]. Head-butting behavior modeled after comparable

interactions observed in caprids and other bovids has popularly

been proposed for pachycephalosaurids [40] and has been

supported by structural models [5,6]. However, pathological

evidence for such behavior has not been previously described in

pachycephalosaurids [5].

Extant birds and crocodilians commonly exhibit osteological

lesions following. In such cases, trauma or contraction of disease

can cause the accumulation of fibrous, caseous necrotic masses due

to infection, and the isolated infection results in the removal and

modification of bone [41]. While these kinds of infections can arise

from a variety of causes, the large depressions present on BMR

P2001.4.5 appear similar to injuries sustained from compression

fractures and blunt force trauma in extant birds and crocodilians

[41–43].

While no extant archosaurs have structurally comparable

frontoparietal domes like pachycephalosaurids, intraspecific

head-butting behaviors have been documented in some extant

archosaurs, such as the Helmeted Hornbill (Buceros vigil) and the

Southern Cassowary (Casuaris casuaris johnsonii) [44,45]. Similar

head-slapping behaviors among crocodilians during intra- and

interspecific conflicts have also been extensively documented [46].

In many cases, conflicts occur among juveniles who engage in

intra- and interspecific disputes that commonly result in injury and

occasionally infection [46–49]. Kicking and facial pecking during

intraspecific bouts among ostriches has been shown to result in a

high frequency of injuries [42].

Common injuries in extant birds also include impact fractures to

the skull due to collision with man-made structures such as

windows and buildings. While these injuries are often fatal,

instances of survival have been documented [42,43]. For example,

specimens of Rocky Mountain Grosbeak (Hedymeles melanocephalus

papago) and European Greenfinch (Carduelis chloris) have exhibited

extensive osteological remodeling following a cranial injury [42]

(Figure 4). In such instances, the resulting lesions formed large

circular depressions with irregular surfaces on the calverium

similar to the depressions observed on BMRP 2001.4.5.

The lesions in BMR P2001.4.5 are clustered over the thickest

region of the dome (Figures 1–3); this distribution corresponds well

to the location of expected traumatic pathologies resulting from

agonistic behavior proposed for pachycephalosaurids [5,7]. While

a formal study on pathologies in pachycephalosaurids has yet to be

conducted, it is possible that pathologic lesions such as those in

BMR P2001.4.5 may have been previously misidentified as

taphonomic artifacts and non-traumatic bone resorption in other

specimens. A re-evaluation of previously described frontoparietal

domes is likely to yield more pathologic dome specimens; the

holotypes of Gravitholus albertus and Texacephale langstoni also possess

similar cranial features exclusively on the dorsal surface (author’s

pers. observ.). The occurrence of cranial lesions in pachycepha-

losaurids has considerable implications for behavior and fronto-

parietal dome function beyond species recognition [50], and

provide further evidence of agonistic behavior in pachycephalo-

saurs.

Supporting Information

Figure S1 3D model of BMRP 2001.4.5. Model was created

with the NextEngine 3D Desktop scanner and software, converted

to U3D using Meshlab, and assembled in a *.pdf with Basic

MikTex.

(PDF)
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