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Abstract

Background: Dysalotosaurus lettowvorbecki is a small ornithopod dinosaur known from thousands of bones and several
ontogenetic stages. It was found in a single locality within the Tendaguru Formation of southeastern Tanzania, possibly
representing a single herd. Dysalotosaurus provides an excellent case study for examining variation in bone microstructure
and life history and helps to unravel the still mysterious growth pattern of small ornithopods.

Methodology/Principal Findings: Five different skeletal elements were sampled, revealing microstructural variation
between individuals, skeletal elements, cross sectional units, and ontogenetic stages. The bone wall consists of fibrolamellar
bone with strong variability in vascularization and development of growth cycles. Larger bones with a high degree of
utilization have high relative growth rates and seldom annuli/LAGs, whereas small and less intensively used bones have
lower growth rates and a higher number of these resting lines. Due to the scarcity of annuli/LAGs, the reconstruction of the
life history of Dysalotosaurus was carried out using regularly developed and alternating slow and fast growing zones.
Dysalotosaurus was a precocial dinosaur, which experienced sexual maturity at ten years, had an indeterminate growth
pattern, and maximum growth rates comparable to a large kangaroo.

Conclusions/Significance: The variation in the bone histology of Dysalotosaurus demonstrates the influence of size,
utilization, and shape of bones on relative growth rates. Annuli/LAGs are not the only type of annual growth cycles that can
be used to reconstruct the life history of fossil vertebrates, but the degree of development of these lines may be of
importance for the reconstruction of paleobehavior. The regular development of annuli/LAGs in subadults and adults of
large ornithopods therefore reflects higher seasonal stress due to higher food demands, migration, and altricial breeding
behavior. Small ornithopods often lack regularly developed annuli/LAGs due to lower food demands, no need for migration,
and precocial behavior.
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Introduction

In General
Ever since scientists began to work with the remains of those

extinct animals that lack direct living descendants, they dreamed

of being able to accurately reconstruct life histories and, at least

partially, social structures and behavior. Unfortunately, it is almost

impossible to obtain such fundamental information using only

morphological and/or statistical methods, because absolute

ontogenetic dates of age or time of sexual maturity are not

determinable. Size classes within a bonebed of a single species,

surface texture of bones, or degree of suture closure are examples

of tools often used to estimate relative age and ontogenetic status of

fossil animals, but these methods are always highly imprecise (e.g.

[1–4]). The study of bone histology has enabled paleontologists

partially filling this methodological gap, because its insights can

provide the required absolute data in many cases (see e.g. [5–10]

for a general introduction into bone histology and common terms).

The basal iguanodontian ornithopod dinosaur Dysalotosaurus

lettowvorbecki was the subject of this study. Dysalotosaurus was found

during the famous German Tendaguru expeditions of 1909 to

1913, which took place 60 km west of the seaport of Lindi,

southeast Tanzania [11,12]. In contrast to the abundant remains

of sauropods and the stegosaur Kentrosaurus, Dysalotosaurus is known

from only a single locality, but the two closely related

monodominant bonebeds found in channel lag deposits [13]

produced thousands of bones of a minimum number of 100

individuals, from several growth stages, and in all degrees of

disarticulation [9]. Although the genesis of this mass accumulation

has long been discussed as of either catastrophic or attritional

origin [14–16], the available taphonomic record currently favors

the catastrophic mortality of a single herd [9]. Preburial

weathering and signs of scavenging (widely distributed bones,

tooth marks, a significant number of shed carnivore teeth) are

absent, which implies fast burial after death. Abrasion is also

unknown and there is only slight sorting of bones in favor of large
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and/or robust elements. The bonebeds are therefore autochtho-

nous or parautochthonous in origin. A preservational difference

between the two bonebeds, the upper of which almost overlies the

lower, is not recognizable. Thus, a single Dysalotosaurus herd was

probably trapped in one of the numerous tidal channels of that

ancient coastal plain [17], drowned in a spring tide, and their

graveyard was reworked at least once by another spring tide (a

process that can take place every two weeks) resulting in the split

into two separate bonebeds. A more detailed analysis of the

taphonomy of the Dysalotosaurus quarry will be published in a

subsequent paper.

An ontogenetic series of femora of Dysalotosaurus was previously

studied by Anusuya Chinsamy-Turan [18] under the name

Dryosaurus lettowvorbecki. The generic name Dysalotosaurus was made

a synonym of Dryosaurus by Galton [19] due to many morpholog-

ical similarities between D. lettowvorbecki and D. altus. However, an

ongoing revision of the anatomy of both taxa (see also [9] and [20]

for comments) revealed numerous significant anatomical differ-

ences in several parts of the skeleton, which clearly support the

resurrection of the genus Dysalotosaurus.

Age Estimations via Bone Histology
In many recent tetrapods, one growth cycle commonly

represents one year of time (e.g. [5,6,8,10,21,22,23]), and this

observation has been commonly used to estimate age for extinct

tetrapods (e.g. [24–30]). This fact is the basis of the method of

skeletochronology [31].

However, an accurate count of the number of annuli and/or

LAGs (Lines of Arrested Growth) is often hampered by the

ontogenetic expansion of the marrow cavity and/or secondary

remodeling. This problem was often solved by the back-calculation

of the lost/obscured number of annuli/LAGs [5,28,32,33,34]) or

by the examination of an ontogenetic series (e.g. [27,35,36]).

There is also a high variability in the number of annuli/LAGs

between different individuals within a single population (e.g. [22]),

between different skeletal elements of one individual (e.g. [33,36],

and sometimes even in the cross section of a single bone (e.g. [37]).

For example, single individuals of the dinosaurs Plateosaurus

[32,33], Maiasaura [36], and Hypacrosaurus [38] show different

numbers of preserved LAGs in different skeletal elements,

depending upon the general anatomical condition and specific

growth pattern of each of these elements (e.g. cortical thickness,

growth rate, rate of remodeling etc.).

A last important point is the assumption that all annuli/LAGs

counted in a bone are indeed true annual layers. These lines can

also be generated as a result of environmental stress, such as

scarcity of food, illness, or during seasons of pairing or

reproduction [5]. It is also possible to find double LAGs, which

are consistently close together and represent a single year. Some

tropical mammals, for instance, can even generate two cycles per

year [22]. All these deviations from the simple annual model of

growth cycles are rarely discernable in extinct species (e.g. [33])

and must be treated as sources of error in the calculation of

individual age.

Another actualistic method used to estimate relative age of

extinct animals is ‘Amprino’s Rule’ (e.g. [32]). Amprino [39]

suggested that similar bone tissues in different animals reflect

similar growth rates. It is now widely accepted that maximum

body size seems to be one of the major factors that influences

growth rates, and therefore indirectly influences bone tissue types

[40–44]. There are also differences in growth rate between

different elements within a single skeleton (e.g. [32,36,40,45]) and

during ontogeny (e.g. [5,18,34,38]). However, recent studies of

birds and reptiles recognized a clear correlation between growth

rate and the size and density of vascular canals, but no correlation

between growth rate and orientation of vascular canals

[40,41,45,46]. Such a correlation seems to exist only due to

extreme environmental conditions, which force an animal to

generate extraordinarily high growth rates [47]. Thus, ‘Amprino’s

Rule’ can help to estimate the growth rate of an extinct species,

but, as for skeletochronology, the results are strongly dependent on

body size, ontogenetic stage, and skeletal element and should

always be considered in comparison with other individuals,

populations, and species.

Bone Histology in Ornithopod Dinosaurs
Ornithopods are one of the best studied dinosaur groups with

regard to bone histology, because several taxa are known from

many individuals of different growth stages [18,34,36,38,48–

55]. It has even proved possible to reconstruct the breeding

strategy (altricial or precocial) and life history for some taxa.

However, whereas the growth pattern of large ornithopods is

quite well understood, the bone histology of many small

ornithopods has raised more questions than answers as to their

growth patterns [6,18,48,52,55]. In particular, the scarcity or

even absence of annuli/LAGs, the usual tool for age estima-

tions, has considerably complicated the reconstruction of their

life history. The recent discovery that annuli/LAGs are indeed

present in Dysalotosaurus and its close relative Dryosaurus ([9,52],

in contrast to [18]) helped in interpretations of their growth

patterns. However, the inconsistent development of annuli/

LAGs made it necessary to examine another type of growth

cycle for the reconstruction of the life history of Dysalotosaurus

[9]. Additional types of possible annual markers were previously

documented mainly in sauropods (e.g. [56,57,58]). The annual

development of the type of growth cycles used here has been

assumed previously [59], but the application of these growth

cycles in order to reconstruct life history is successfully made

here for the first time.

Observations of bone tissue types as well as vascular and fibrillar

organization in different skeletal elements of Dysalotosaurus led to

some important insights into the reasons behind these multiple

variations. Furthermore, the highly inconsistent development of

annuli/LAGs and the newly described type of annual growth

cycles resulted in a new hypothesis to explain the differences in

growth patterns between large and small ornithopods.

Results

The description of the microstructure of the sampled bones will

be restricted to the main features of cross sectional shape,

vascularization, and development of growth cycles. Where

appropriate, the microstructure of the femur will also be compared

to the description provided by Chinsamy [18]. A complete version

of the description summarized here is available in the supporting

material (Text S1).

In sum, 70 individual bones were sampled comprising 30

femora, 12 tibiae, 13 humeri, seven fibulae, and eight prepubic

processes, but not all of them could be used for quantitative

analyses due to insufficient preservation.

Bone Histology of the Femur of Dysalotosaurus
Description. The femoral cross section is generally triangular

in shape and becomes more slender close to the base of the fourth

trochanter (see Fig. 1A–D for the general orientation). The

respective cross sections of figure 1 in Chinsamy [18] are

inconsistently oriented, so that the larger section (from a left

femur) is oriented with its anteromedial wall facing ventrally and

Dysalotosaurus Bone Histology
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the smaller section (from a right femur) is oriented with its

posteromedial corner in that way.

The edge of the marrow cavity is well defined and mainly

consistent, but undulations and cavities are often present internal

to the anterior corner. No spongiosa were observed within the

marrow cavity. A layer of endosteally deposited lamellar bone may

be developed in variable thicknesses around the marrow cavity,

although it never forms a completely surrounding band. One

reason is the resorptive posterior edge of the cavity (e.g. Figs. 1B,

D; 2A–B).

The compact bone wall consists mainly of two types of bone

tissue. Most of it is composed of periosteal fibrolamellar bone

tissue with woven fibered matrix and numerous primary osteons

(Fig. 2A–D). Only the anterior corner shows sometimes strongly

birefringent parallel-fibered matrix (Fig. 2E–F) and is most likely

the same region mentioned for a large femur by Chinsamy [18].

The second tissue type, compacted coarse cancellous bone

(CCCB), is of endosteal origin and mostly restricted to the anterior

corner and adjacent areas (marked in red in the sketches of Fig. 1B,

D; 2G–H). In more distal sections, the amount of CCCB relative

to fibrolamellar bone, and the average size of the innermost canals

of CCCB, increases.

The vascularization (sensu lato, following [6]) is very variable in

terms of the size of the canals and overall density. Most of the

vascular canals are well-developed primary osteons. Generally, the

size and density are greatest in the thickest parts of the primary

bone wall (posteromedial corner, Fig. 3A–B) and lowest, with

relatively more matrix between the primary osteons, in the

thinnest parts (Fig. 3C–D). The latter also include the anterior

corner of the femur, because the CCCB wedge takes up the inner

part of the bone wall in this area and the outer primary bone looks

compressed (Fig. 3E–F). The opposite relationship exists for the

degree of organization of vascular canals, where it is highest in the

thinner parts of the primary bone wall (longitudinal to laminar

Figure 1. Representative cross sections and corresponding
sketches of femora, tibiae, and humeri. A–B: Large femur GPIT/RE/
3588, cut distally to the base of the fourth trochanter; C–D: Medium-
sized femur GPIT/RE/3587, cut close to the base of the fourth
trochanter; E–F: Medium-sized tibia GPIT/RE/3724, cut proximal to the
lateral bulge; G–H: Large tibia SMNS T 3, cut close to the lateral bulge; I–
J: Large humerus GZG.V 6223, cut distal to the mid diaphysis; K–L: Large
humerus GPIT/RE/4877/8929, cut proximal to the mid diaphysis. All
sections are oriented and scaled consistently. Internal red area
represents CCCB (B, D, H, J) or an endosteal layer (L). Lines in green
mark cross sectional damage. Growth cycles are shaded (B) or lined (D,
F, H, J, L) in gray, annuli/LAGs are lined in red. The blue area in H
represents medullary bone.
doi:10.1371/journal.pone.0029958.g001

Figure 2. Details of cross sections of Dysalotosaurus femora
showing resorption and bone tissue types. A–B: GPIT/RE/3588, A –
Interior margin of posterolateral corner demonstrating the resorptive
nature of the marrow cavity, under polarized light. Note the angle of
the zonation towards the marrow cavity at the top. B – The same as in A
under normal light. C–D: SMNS F 2, C – Part of the posterolateral bone
wall with numerous primary osteons under polarized light. The
orientation of bone fibers and primary osteons varies between the
darker and the strongly birefringent zones. The marrow cavity lies in the
direction to the top right. D – The same as in C under normal light. E–F:
GPIT/RE/3587, E – Part of the anterior corner under polarized light
showing parallel-fibered tissue with mainly circumferential primary
osteons and a small cluster of secondary osteons at the top right
(arrows). F – The same as in E under normal light. G–H: GPIT/RE/3414, G
– Part of the anterior wedge of CCCB (Compacted Coarse Cancellous
Bone) under polarized light. Note the difference between the
continuous transitions between the trabeculae of the CCCB and the
interruptions in the lamellar bone originating from secondary osteons
of various developmental stages. The marrow cavity is located at the
bottom. H – The same as in G under normal light. Scale bars = 1 mm in
A, B. Scale bars = 500 mm in C–H.
doi:10.1371/journal.pone.0029958.g002
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orientations) and very low in the thickest parts (plexiform to

sometimes reticular orientations; compare Figs. 3C–D with 3A–B).

An additional tendency is the general increase of vascular

organization from inner parts of the bone wall towards the

periosteal surface. However, the laminar type of vascularization is

the most abundant. The smallest, longitudinal, and fairly well-

organized primary osteons are observable in the innermost areas

of the primary bone wall around the anterior corner. There are

relatively thick bands of matrix, which isolate these osteons from

each other and which resemble a knitted pattern (Figs. 3E–H).

The posterolateral corner represents a special area of the bone

wall (Fig. 4A–B). Here, primary osteons are less well developed,

larger on average, and more randomly shaped and oriented than

in all other cross sectional units (Fig. 4C–D). This area, which will

be called the Posterolateral Plug in the following text, represents a

very abrupt change within the organization of bone tissue. The

general course of growth cycles, bone laminae, and the orientation

of vascular canals stops at the border of the Posterolateral Plug

(Fig. 4B) and only distinct annuli/LAGs can be followed through

it. This area is most prominent in sections slightly distal to the

midshaft and becomes less prominent proximally, towards the

fourth trochanter. A similar structure is sometimes visible in the

outer cortex of the anterior corner of more proximal sections, and

in larger sections (Fig. 4E–H). This cluster, however, does not

significantly disturb the general organization of the tissue and is

also far less widespread.

The zonation pattern is also highly variable. Annuli/LAGs are

present (in contrast to [18]; Fig. 5A–B), but only in 10 out of 30

sampled femora. There is additionally no correlation between the

size of the bone and the number of annuli/LAGs (compare Fig. 1B,

D). None of the cross sections record more than one or two

Figure 3. Variation of vascular organization in cross sections of
Dysalotosaurus femora. A–D: GPIT/RE/3588, A – Part of the medial
corner with numerous poorly organized primary osteons and weakly
birefringent bone matrix, under polarized light. B – The same as in A
under normal light. C – Part of the lateral wall with well organized
laminar and circumferential primary osteons as well as mainly
transverse and strongly birefringent bone fibers, under polarized light.
D – The same as in C under normal light. E–F: GZG.V 6590 28, E – Medial
part of the anterior corner with the CCCB wedge involving about half of
the bone wall thickness and apparently compressing the primary bone
wall exteriorly, under polarized light. F – The same as in E under normal
light. G–H: SMNS F2, G – Internal part of the anterior corner beside the
CCCB wedge (starts beyond the left frame of the image) showing the
typical knitted pattern with small, laminar and mainly longitudinally
oriented primary osteons nested between thick cords of matrix, under
polarized light. The marrow cavity is at the bottom to the left. H – The
same as in G under normal light. Scale bars = 500 mm in A–D, G–H. Scale
bars = 1 mm in E–F.
doi:10.1371/journal.pone.0029958.g003

Figure 4. Cross sectional units in Dysalotosaurus femora with
unusual bone tissue. A–H: GPIT/RE/3414, A – Overview of the
oriented cross section (a = anterior, l = lateral), under normal light. B –
Magnification of the lateral corner demonstrating the interruption of
the usual vascularisation by the cloud of reticular canals of the
Posterolateral Plug, under normal light. C – Magnification of the section
framed in B, under polarized light. Arrows indicate scattered secondary
osteons. D – The same as in C under normal light. Note the high density
of osteocyte lacunae. E – Magnification of the anterior corner under
polarized light and slightly rotated clockwise relative to A. F – The same
as in E under normal light. G – Magnification of the upper center of E.
Note the weak development of many primary osteons. H – The same as
in G under normal light. Scale bars = 5 mm in A. Scale bars = 1 mm in B,
E–F. Scale bars = 500 mm in C–D, G–H.
doi:10.1371/journal.pone.0029958.g004
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annuli/LAGs. Nevertheless, these are the only growth cycles that

can be followed around the cross section.

Another type of growth cycle is much more abundant, but less

distinctive than annuli/LAGs because it is often only clearly visible

under polarized light (Fig. 5C–D). This type is most developed

within the lateral side of the posterior wall close to the

Posterolateral Plug (Figs. 1A–D; 5E). It consists of weakly

birefringent fast growing zones (viewed under polarized light)

with mainly longitudinally oriented collagen fibrils, as well as

numerous and dense primary osteons that show a relatively lesser

degree of organization (Fig. 5F–G). The fast growing zones

alternate with more strongly birefringent slow growing zones,

which consist of mainly transversely oriented collagen fibrils and

less dense and more circumferentially oriented primary osteons

that show a relatively higher degree of organization (Fig. 5F, H).

The transition from the fast to the slow growing zone is diffuse.

Only the external rim of the slow growing zones is definable and

possible annuli/LAGs occur mainly in this area. Thus, one growth

cycle consists of an internal fast growing zone and an external slow

growing zone. The slow growing zones often merge together in the

thin parts of the primary bone wall (especially anteriorly) or split

up towards thicker parts, where they even vanish in some areas.

One has therefore to check carefully their number and extension

by repeatedly rotating the cross sections under polarized light. The

Posterolateral Plug interrupts the course of these growth cycles

completely (Figs. 4A; 5C–E).

Five out of six of the largest sectioned femora show a transition

(Mark of Initial Sexual Maturity – MISM, see below) from the

generally distinct sequence of growth cycles internally to a much

more uniform area externally. The latter resembles a very thick

slow growing zone and only a very weak internal zonation is

recognizable (Figs. 1A–B; 5E; 6A–E).

Secondary remodeling is very rare, which differs from the

remarks of Chinsamy [18]. There are only local occurrences of

scattered secondary osteons, concentrated mainly in the transi-

tional area between the primary bone tissue and the CCCB

(Fig. 6F–H). Isolated osteons are also present within the latter

(Fig. 2G–H). Other isolated occurrences are located within the

Posterolateral Plug (Fig. 4C–D) and sometimes in the external part

of the anterior corner (Fig. 2E–F). However, sections from more

distal parts of the femur have greater numbers of secondary

osteons throughout the cortex.

The comparison of longitudinal sections of a large femur and of

the smallest sampled femur (Fig. 7) reveals that the amount and

area occupied by pads of calcified cartilage decreases with size, but

there is still a substantial amount present in the large specimen.

The large specimen is much better ossified than the small

specimen, consisting of a dense meshwork of trabecular bone.

However, there is a concentration of bony straps in the epiphyseal

centre of the small specimen, which reaches almost to the distal

end.

Ontogenetic Stages in Femora
Due to the highly variable features within the shaft, between

different femoral cross sections, and even within a single section,

ontogenetic stages are difficult to distinguish. The use of most of

the features, such as the degree of development of primary osteons,

vascularization pattern, or secondary remodeling, was therefore

limited, and there is often a smooth transition between successive

ontogenetic stages. However, useful indicators of ontogenetic stage

are, in addition to absolute size, the number of growth cycles and

the degree of development of distinct areas, such as the

Posterolateral Plug.

Stage 1 or Embryonic/Perinatal Stage. This stage, already

described in some other ornithopods [36,51,52], is not represented

in the sampled femora of Dysalotosaurus, and the overall size of

other known specimens indicates that none of the preserved

femora would fit into this stage.

Stage 2 or Early Juvenile Stage (Fig. 8A–D; Tab. 1). The

marrow cavity is very large compared to the bone wall thickness

(see also [18]). The internal anterior wedge, if present, consists of

CCCB that is not yet compacted. The posterolateral corner and

the respective Plug are weakly pronounced. The periosteal

compact bone tissue has a high number of longitudinal vascular

Figure 5. Growth cycles in Dysalotosaurus femora. A–B: GPIT/RE/
3587, A – The outer edge of the posterior bone wall with mainly
circumferential primary osteons and a LAG (arrow), under polarized
light. B – The same as in A under normal light. C–D: GPIT/RE/3414, C –
Interior part of the posterolateral bone wall under polarized light. The
growth cycles (fast growing zones darker, slow growing zones brighter)
stop at the Posterolateral Plug. Arrows indicate the outer edge of a slow
growing zone. D – The same as in C under normal light. The growth
cycles are now very difficult to identify. The best verifiable slow growing
zones are the second and third where the outer edge is less
vascularized and the circumferential orientation of canals is significant.
E–H: GPIT/RE/3588, E – Posterolateral corner under normal light with
the typical alternation of fast (darker) and slow (brighter) growing
zones. The external edge of the slow growing zones is marked by
arrows. Note the transition of the internal cyclicity to an almost uniform
slow growing zone externally (border at the lower edge of the frame). F
– Magnification of the section framed in E showing the strong
organizational difference between primary osteons of the fast growing
zone (center) and the slow growing zones (top and bottom). G – Close
up of a fast growing zone both under polarized and normal light. The
image is slightly rotated in comparison to E and F. H – Close up of a
slow growing zone both under polarized and normal light. The image is
slightly rotated in comparison to E and F. Scale bars = 1 mm in C–E.
Scale bars = 500 mm in A–B, F. Scale bars = 200 mm in G–H.
doi:10.1371/journal.pone.0029958.g005
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canals. The primary osteons are often isolated from each other by

thick bands of well-organized and relatively uniformly birefringent

woven-fibered matrix (knitted texture; Fig. 8B–D). Particularly in

the internal part anteriorly, only simple vascular canals are

present. There is at most one slow growing zone developed at the

external edge of the cortex (Fig. 8B).

Stage 3 or Late Juvenile Stage (Tab. 1). The external

circumferential profile is more pronounced and the Posterolateral

Plug is well visible. The drift of the marrow cavity from

approximately anterior to posterior is in progress, which is

indicated by the well-compacted CCCB of a larger anterior

wedge as well as a deeper incision into the posterior bone wall (this

is also dependent on the sectioned level). The primary osteons are

more numerous and there is a decrease in the proportion of

knitted texture. There are the first occurrences of isolated

secondary osteons. Growth cycles are well distinguishable and

reach two to three in number (Fig. 8E–H).

Stage 4 or Sexually Immature Stage (Tab. 1). The

development of the external cross-sectional profile as well as of

distinct areas (e.g. the Posterolateral Plug) is now complete

(Fig. 1C–D). The anterior wedge of the CCCB is more

pronounced, although this also depends on the relative position

of the cross section within the shaft. The marrow cavity is deeply

incised into the posterior wall (Fig. 1D). The density of well-

developed primary osteons is very high in the thick and fast

growing parts of the sections. Secondary osteons are more

abundant and can also occur in the Posterolateral Plug and the

anterior corner (Fig. 2E–F). The number of growth cycles is three

to five.

Figure 6. The Mark of Initial Sexual Maturity (MISM) as well as
interior details of the anterior corner in large sampled femora
of Dysalotosaurus. A–D: SMNS F1, A – Part of the posterior bone wall,
under polarized light, with the most external fast growing zone
(double-headed arrow) and the transition to the thick, non-cyclical slow
growing area externally (centre and right of the image). This transition is
the MISM. B – The same as in A under normal light. C – Magnification of
the top left of A under polarized light. The MISM is again at the right
end of the double-headed arrow. Note that the MISM is not a sharp line
but just another transition from fast to slower growth without any
further fast growing zones towards the periphery. D – The same as in C
under normal light. E: GPIT/RE/3414 (in front) and GPIT/RE/3588 (in the
back), the sketches demonstrate the perfect overlap of the zonation as
well as the MISM in both large femora. The slow growing zones are
shaded in the back and their external rim is marked in the front. The
dashed lines within the thick external slow growing zone (shaded in
both representing growth after reaching sexual maturity) mark
unsecured growth cycles. F: GZG.V 6590 28, Close up of the border
between the CCCB wedge internally (bottom right) and the primary
bone tissue externally within the anterior corner. Secondary osteons are
marked by arrows. Note the knitted pattern of the primary bone tissue.
G–H: GZG.V 6211 22, G – Internal part of the anterior corner close to the
CCCB wedge (starts at the lower right) with knitted pattern of the bone
tissue internally and some scattered secondary osteons (arrows) still
under development, under polarized light. H – The same as in G under
normal light. Scale bars = 1 mm in A–B. Scale bars = 500 mm in C–D, G–
H. Scale bars = 200 mm in F.
doi:10.1371/journal.pone.0029958.g006

Figure 7. Upside down images of longitudinal sections of the
distal ends of two femora. A–C: large specimen GPIT/RE/3518, A –
Overview under normal light. The foam-like patches at the distal (here
upper) edge consist of calcified cartilage partially divided by trabecular
bone. B – Magnification of the upper centre of A under normal light. C –
Magnification of the upper centre of B under normal light. The bubbles
of calcified cartilage cells are well distinguishable from the osteocyte
lacunae within the trabecular bone. D–F: Small specimen GZG.V 6379,
D – Overview under normal light. The pads of calcified cartilage reach
deeper into the specimen than in A. Trabecular bone is well ossified in
the lower centre but there are already centres of ossification close to
the distal (here upper) surface. E – Magnification of the lower centre of
D. Isolated clusters of calcified cartilage are still present (arrows). F –
Magnification of the upper centre of D showing trabecular bone under
development and isolated remains of calcified cartilage within bone
(arrow). Scale bars = 1 mm in A, D. Scale bars = 500 mm in B, E–F. Scale
bars = 200 mm in C.
doi:10.1371/journal.pone.0029958.g007

Dysalotosaurus Bone Histology

PLoS ONE | www.plosone.org 6 January 2012 | Volume 7 | Issue 1 | e29958



Stage 5 or Sexually Mature Stage (Tab. 1). The units of

the cross sectional bone wall are strongly diversified (Fig. 1A–B).

The anteroposterior migration of the marrow cavity interrupts up

to four growth cycles posteriorly (Figs. 2A–B; 5E). Secondary

osteons are numerous forming clusters anteriorly and

posterolaterally at different distances from the external surface

(Fig. 4C–D). The number of growth cycles reaches up to nine and

the transition from well-distinguishable fast and slow growing

zones internally to the diffuse and more uniform wide zone

externally is visible in five of the largest cross sections (Figs. 1A–B;

4A; 5C–E; 6A–E).

Bone Histology of the Tibia of Dysalotosaurus
Description. The cross-sectional shape of the tibia is almost

egg-like in distal sections and almost circular in proximal sections,

but there is always a straight anterior wall, which opposes the

fibula when in articulation (Fig. 1E–H). The shape of the marrow

cavity is more symmetrical than the external outline and the rim is

mostly well defined and straight. A slight shift of the marrow cavity

medially is observed in later ontogenetic stages.

An endosteal layer is developed almost exclusively in medium to

large sections (Fig. 9A–B; see Tab. 2 for comparable sizes of

samples) with its maximum thickness in the anteromedial or

anterolateral corner. With one exception, the endosteal layer

never completely surrounds the marrow cavity.

As in the femora, the tibial cross sections consist generally of

fibrolamellar bone tissue with a high density of well-developed

primary osteons, which are predominantly organized in a laminar

pattern (Fig. 9A–B). The variability in size, density, and

organization of vascular canals/primary osteons is also compara-

ble to that seen in femora (Fig. 9). CCCB may occur as a wedge in

the anterolateral corner internally, which extends far into the

cortex only in the two largest cross sections (Figs. 1G–H; 9E–G). In

most of the smaller sections (see below), as well as in the proximal

sections, CCCB is absent. A structure similar to the femoral

Posterolateral Plug is visible in the middle cortex of this corner

(Fig. 9E, H), although its extent within the tibial shaft is much

smaller than in the femur.

The zonation pattern is also similar to that of the femora, with

very few annuli/LAGs and with growth cycles mainly consisting of

fast and slow growing zones (Figs. 1F, H; 9A, E; 10; Tab. 2). The

growth cycles are best preserved in the anterior and/or medial

walls. A transition from distinct growth cycles internally to a

uniform slow growing area externally, as occurs in five large

femora, is not visible in the two large tibiae.

Secondary remodeling is even rarer than in femora. The only

area with preserved secondary osteons is the anterolateral corner

of large (SMNS T3; GZG.V 6791, see Tab. 2) and more distal

sections. Scattered examples are found mainly in the outer area of

the CCCB wedge and within the Anterolateral Plug (Fig. 9H).

In one of the large tibial cross sections (SMNS T3), at the

anterior edge of the marrow cavity, an unusual bone tissue is

preserved (Figs. 1G–H; 11). It is strongly cancellous with

irregularly shaped caverns of various sizes. It is weakly birefringent

under polarized light. It is also clearly separated from the compact

bone wall by an endosteal layer (Fig. 11C–D, G–H). Some of this

tissue was also found inside two large caverns within the CCCB-

wedge (Fig. 11A–D). All these features, and the absence of any

external pathologies (including a thickening of the bone wall or

bilaterally symmetrical occurrence of unusual tissue as a sign for

osteopetrosis [60,61]), indicate that this tissue belongs to the

endosteal type of tissue called medullary bone, which has already

been documented in three other dinosaur taxa [62,63] (but see

[60]). This tissue is known among living vertebrates only in birds

and it functions as storage for the calcium needed for the

development of eggs in breeding females. Thus, medullary bone

tissue is also a marker for sexually mature females around the

breeding period [63].

Ontogenetic Stages in the Tibiae
The recognition of distinct ontogenetic stages in the tibiae is

more difficult than in the femora, because there are fewer tibial

sections available, and because most of the available specimens,

belonging to a medium size range (see stage 3 below, Tab. 2), are

probably of the same immature stage. However, the differences

between these and the younger and older stages are substantial,

Figure 8. Bone histology and growth cycles in juvenile femora
of Dysalotosaurus. A–D: GZG.V 6379, A – Orientated overview
(a = anterior, l = lateral) under normal light. Note the wide marrow
cavity compared to the bone wall thickness in this early juvenile
specimen. B – Magnification of the posterolateral corner under
polarized light with only a weak indication of the Posterolateral Plug.
The knitted pattern of the bone tissue with mainly longitudinal primary
osteons is dominant. C – Magnification of the interior of the anterior
corner medially, under both polarized and normal light, with a CCCB
wedge under development and the typical knitted pattern of the
primary bone tissue. D - Magnification of the interior of the anterior
corner laterally, under both polarized and normal light, with the typical
knitted pattern of the primary bone tissue. The vascular pattern
changes already to more circumferential primary osteons towards the
periphery. E–H: GZG.V 6590, E – Three slow growing zones are well
visible under polarized light. The Posterolateral Plug starts at the left
edge of the image. F – The same as E under normal light. G –
Magnification of the utmost slow growing zone with an annulus at its
interior border. H – The same as in G under normal light. Scale
bars = 1 mm in A–B, E–F. Scale bars = 500 mm in C–D. Scale
bars = 200 mm in G–H.
doi:10.1371/journal.pone.0029958.g008
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owing mainly to the preserved number of growth cycles and the

number and distribution of secondary osteons.
Stage 1 or Embryonic Stage. As in the femora, this stage is

unknown in the tibiae.
Stage 2 or Early Juvenile Stage. Probably only a single tibia

belongs to this stage (GPIT/RE/3795; Fig. 12; Tab. 2). The

different units of the cross section differ only slightly from each

other. An Anterolateral Plug, secondary osteons, CCCB, an

endosteal layer, and resorption activity of the marrow cavity are

all absent. Primary osteons are present, but they are still under

development. Simple, laminarly organized, longitudinal canals are

common, but radial orientations are also visible in the anterolateral

corner (Fig. 12A–B, E–F). If at all present, only the beginning of the

first slow growing zone is visible at the outer edge of the bone wall.

Stage 3 or Late Juvenile to Sexually Immature

Stage. These cross sections possess much better differentiated

units including the Anterolateral Plug, which occur in distal

sections within the shaft. CCCB, secondary remodeling, and

resorption by the marrow cavity are observed in some sections.

The knitted pattern is now only preserved in the inner cortex,

whereas primary osteons are now well developed and widely

distributed. At least two to three growth cycles are present

(Fig. 1E–F; 10C–F).

Stage 4 or Sexually Mature Stage. The two largest samples

(SMNS T3; GZG.V 6791) belong to this stage. The cross-sectional

units are strongly differentiated and the bone wall thickness is

highly variable (Fig. 1G–H). The CCCB tissue forms a large

wedge, which reaches far into the cortex anterolaterally. There is a

distinct swirl-like Anterolateral Plug within the anterolateral

corner (Fig. 9E). Simple juvenile vascularization is preserved

only as a relict in some of the innermost parts (Fig. 9A–B).

Secondary osteons are more abundant within the Anterolateral

Plug (Fig. 9E, G). Primary osteons are dense and numerous. The

number of growth cycles exceeds three. Finally, medullary bone

may be found in one of the cross sections of this stage (Fig. 11).

Bone Histology of the Humerus of Dysalotosaurus
Description. The shape of the cross sections varies from a

lateromedially wide and flat oval outline distally to an almost

circular oval shape more proximally (Fig. 1I–L). CCCB is very

rare and only visible in various units in the most distal sections and

in the anterolateral part in the most proximal sections. More

common is the development of an endosteal layer, although it

never surrounds the marrow cavity completely. Proximal sections

often possess a thick but short wedge of endosteal bone in the

anterolateral corner of the cavity (Fig. 13A–B).

The bone matrix of the primary compact bone wall consists

mainly of fibrolamellar bone tissue, although the anterolateral

corner can be built by parallel-fibered tissue in some of the more

proximal sections (Fig. 13C). However, this Anterolateral Plug is

only visible in mid diaphyseal and proximal sections and is much

less distinct than in femora and tibiae.

Primary osteons are numerous and dense, but there are high

numbers of relatively smaller and longitudinal osteons with a

strongly birefringent single ring of lamellar infilling (Fig. 13D).

Such small primary osteons are absent in femora and tibiae, but

the relative amount of well-developed larger primary osteons as

well as their density is the same. The dominant type is again the

laminar organization (Fig. 13F, H). In some proximal sections,

convoluting radial canals can be found, which often extend

throughout the whole thickness of the cortex (Fig. 13G).

Annuli/LAGs are more abundant than in femora and tibiae,

but their distribution is still very inconsistent (Fig. 13E–F, H).

Secondary osteons are very rare. They are mainly located at the

edge of the CCCB in the most distal or proximal sections, but they

mainly occur close to the internal margin of the anterolateral

corner along the edge of the short endosteal layer (Fig. 13D) or

within the Anterolateral Plug.

Ontogenetic Stages in Humeri
The differentiation of humeral cross sections into ontogenetic

stages is much more ambiguous than in the femora and tibiae. The

only clear features are the size and the number of growth cycles.

Figure 9. Vascular patterns and tissue types in a Dysalotosaurus
tibia. A–H: Large tibia SMNS T3, A – Internal part of the lateral bone
wall with laminar to sub-plexiform bone tissue under polarized light.
Transversely oriented bone fibers dominate. The knitted pattern is
visible at the right close to the marrow cavity. A thick endosteal layer is
marked by white arrows. B – The same as in A under normal light. The
external border of the prominent slow growing zone of A is also well
visible here (green arrow). C – Strongly unordered primary osteons in a
weakly birefringent woven matrix within the medioposterior corner
under both polarized and normal light. D – Well organized primary
osteons in a strongly birefringent almost parallel-fibered matrix at the
outer edge of the lateral wall under both polarized and normal light. E –
Overview of the anterolateral corner (here anterior to the bottom and
lateral to the left) under polarized light. Note the whirl-like Anterolateral
Plug within this corner, which interrupts the usual bone tissue, and the
wedge of CCCB to the right at the marrow cavity. F – Partial close up of
the CCCB wedge with the usual continuous lamellar bone and some
interrupting secondary osteons (arrows), under both polarized and
normal light. G – Close up of the border between CCCB (upper right)
and primary bone tissue (lower left), under both polarized and normal
light. The latter strongly resembles the juvenile knitted pattern. H –
Magnification of the framed part in E showing an area within the
Anterolateral Plug, under both polarized and normal light. Secondary
osteons are marked with arrows. Scale bars = 1 mm in A–B, E. Scale
bars = 500 mm in C–D, F, H. Scale bars = 200 mm in G.
doi:10.1371/journal.pone.0029958.g009
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Stage 1 or Embryonic Stage. As in the other sectioned

elements, this stage is not preserved.

Stage 2 or Juvenile Stage. The smallest sections with not

more than a single growth cycle belong to this stage (Tab. 3;

Fig. 13A–B, D, G). The slow growing part (zone, annulus, or LAG)

exists close to or at the outer rim of the bone wall. The degree of

organization of the vascular canals is low, so that plexiform to

sometimes reticular tissue type predominates.

Stage 3 or Post-Juvenile Stage. All remaining cross sections

belong to this stage and a further subdivision is not possible. The

number of growth cycles exceeds one and the laminar vascular

pattern predominates (Tab. 3; Fig. 13C, E–F, H).

Bone Histology of the Fibula of Dysalotosaurus
Due to the scarcity of preservation of fibulae, cross sections

could only be produced from levels very close to or within their

proximal metaphysis. Therefore, periosteal compact bone is, if at

all, often present as a thin layer surrounding parts of the bone wall

externally and it was impossible to get a truthful count of growth

cycles.

The overall shape of the cross sections is oval to kidney-like with

very thick and strongly curved bone walls anteriorly and

posteriorly. Most of the outer rim of the marrow cavity is poorly

defined because of wide cavernous spaces surrounded by a loose

network of trabeculae. An endosteal layer can only be observed

along the thinner lateral and medial walls. This band of lamellar

bone is very thick posteromedially (Fig. 14 A–D).

The thin layer of periosteal primary compact bone consists of

fibrolamellar bone tissue, although the primary osteons are often

relatively small and scattered. Endochondral bone tissue is often

developed between this peripheral fibrolamellar bone and the

internal CCCB.

The medial wall differs strongly from the other units, because it

is heavily altered by dense Sharpey’s fibers, so that the area is

strongly birefringent under polarized light (Fig. 14E–F). The bone

matrix seems to be completely metaplastic in origin and the

Figure 10. Growth cycles in Dysalotosaurus tibiae. A–B: Large tibia
SMNS T3, A – Close up of the anterior bone wall with a slow growing
zone flushing externally with an annulus (arrow) and a LAG (at the
internal edge of the former), under polarized light. B – The same as in A
under normal light. The arrow marks again the annulus. The LAG is
visible as up to two thin lines at its internal edge. C–F: Smaller tibia
GPIT/RE/3724, C – Anteromedial corner under polarized light with up to
five slow growing zones. The three middle growth cycles, consisting of
a fast and a following slow growing zone, are completely visible
(marked by three double-headed arrows). Whether the utmost slow
growing zone is complete or not cannot be verified. D – The same as in
C under normal light. Fast and slow growing zones are again difficult to
distinguish. Apart from using polarized light, only minor differences in
the organization of primary osteons are visible. E – Magnification of C
with the two external arrows included. F – Magnification of D with the
two external arrows included. Scale bars = 1 mm in C–D. Scale
bars = 500 mm in A–B, E–F.
doi:10.1371/journal.pone.0029958.g010

Figure 11. Details of medullary bone found in a single tibia of
Dysalotosaurus. A–H: Large tibia SMNS T3 with images of the
preserved medullary bone tissue at the anterior edge of the marrow
cavity. See also Fig. 1G–H for an overview, A – The strongly cancellous
medullary bone tissue (mainly in brown colors, under polarized light) is
also developed within two large cavities at the edge of the marrow
cavity. The difference to the primary bone tissue at the bottom and the
CCCB at the lower right is striking. B – Approximately the same as in A
under normal light, only slightly rotated image. The strong difference of
the medullary bone tissue to the tissue types within the bone wall is still
well visible. C – Close up of one part visible in A and B under polarized
light. The separation between medullary bone and the actual bone wall
tissues is marked by an endosteal layer (arrows). D – The same as in C
under normal light. E – Overview of the medial part of the preserved
medullary bone tissue under polarized light. The endosteal layer is
marked by arrows. F – The same as in E under normal light. G –
Magnification of E between its two central arrows under polarized light.
The endosteal layer is again marked by an arrow. Note the resorptive
nature of this part of the marrow cavity before the development of the
endosteal layer. H – Same as in G under normal light. Scale bars = 1 mm
in A–B, E–F. Scale bars = 500 mm in C–D. Scale bars = 200 mm in G–H.
doi:10.1371/journal.pone.0029958.g011
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vascular canals are simple, elongated, and oriented parallel to the

Sharpey’s fibers.

Secondary osteons are very common in these metaphyseal cross

sections. The CCCB is not involved, but its external border and

most of the endochondral tissue is strongly remodeled. Internal

and mid cortical areas of the posterior corner may even consist of

dense haversian tissue of at least two generations of secondary

osteons (Fig. 14 G–H). The medial wall is affected by very coarse

remodeling (Fig. 14E–F), because the scattered secondary osteons

are much larger.

In the cross section of the large fibula GPIT/RE/5109, possible

medullary bone is preserved internal to a part of the endosteal

layer that fans out (Fig. 14A–D). The medullary bone tissue also

differs from the thick layer of CCCB external to the endosteal

layer by the lack of birefringent lamellar bone typical for the latter,

by the complete lack of osteonal development, and by a much

higher density of osteocyte lacunae within its reticular network.

Bone Histology of the Prepubic Process of the Pubis of
Dysalotosaurus

The sections cut directly at the maximum lateromedial width of

the prepubic process have a wide oval shape (Fig. 15A). Sections

taken more distally/anteriorly to the maximum width of the

prepubic process have a triangular to lamp shade-like external

outline (Fig. 15B).

The periosteal compact bone wall is very thin compared to the

overall diameter of the cross sections. There is no consistent

internal margin, because a single large marrow cavity is absent.

However, some of the internal cavities are quite large. These

cavities are always of resorptive origin, because remnants of

periosteal compact bone are often still preserved in some of the

thicker trabeculae (Fig. 15C–D).

Figure 12. Bone histology of the smallest preserved tibia of
Dysalotosaurus. A–F: Early juvenile tibia GPIT/RE/3795, A – Overview of
the anterolateral corner under polarized light. CCCB and the
Anterolateral Plug are absent. The interior part of that corner is altered
by preservation (see also Fig. S1). B – The same as in A under normal
light. C – The posterior wall is well vascularized and the primary osteons
are plexiform to reticular in arrangement. The degree of organization as
well as of the birefringence seems to increase towards the external
surface, under polarized light. D – The same as in C under normal light.
E – Magnification of A under polarized light. F – Magnification of B
under normal light showing many simple vascular canals oriented
radially. Scale bars = 1 mm in A–B. Scale bars = 500 mm in C–F.
doi:10.1371/journal.pone.0029958.g012

Figure 13. Bone histology in Dysalotosaurus humeri. A–B: GPIT/
RE/4402, A – Orientated overview (a = anterior, l = lateral)
under normal light. Note the differences in bone wall thickness
and between the shapes of the marrow cavity and the whole cross
section of this proximally cut section. B – Magnification of the framed
area in A (rotated anti-clockwise by app. 120u) under normal light. The
thick wedge of lamellar bone of the endosteal layer is marked by an
arrow. Note the large amount of small longitudinal primary osteons. C:
GZG.V 6664, Close up of the anterolateral corner with circumferential
primary osteons separated by very thick cords of matrix. These relations
in thickness together with areas of very high concentrations of
osteocyte lacunae (left centre of image) are restricted to this cross
sectional unit, under both polarized and normal light. D – Magnification
of lower centre of B under normal light. The marrow cavity is close by in
the direction to the right. Small primary osteons with only a single ring
of lamellar infilling are marked by green arrows. Secondary osteons are
marked by blue arrows. E–F: GZG.V 6569, E – sketch with the external
edges of slow growing zones marked in gray and a LAG marked in red.
The dashed line represents an unsecured slow growing zone. F – Image
of the framed area in E under normal light. The four secured cycles of E
are marked here by arrows. Note the increasing organization of primary
osteons towards the periphery and the slight differences between the
fast growing zones and the often rather thin slow growing zones. The
LAG is marked by the wide-headed arrow. G: GPIT/RE/4402, the internal
area of the posterior bone wall is rotated 90u clockwise relative to A and
shows many inclined radial canals. These canals are perpendicular to
the surface medially. H: GPIT/RE/4877/8929, Arrows indicate two closely
located LAGs, under both polarized and normal light. Scale bars = 1 mm
in A–B, F. Scale bars = 500 mm in C, G–H. Scale bars = 200 mm in D.
doi:10.1371/journal.pone.0029958.g013
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This tissue consists of vascular fibrolamellar bone. Well-

developed primary osteons are mainly visible in the dorsal and

medial parts of the bone wall, but they are not very dense and

mostly longitudinal in arrangement (Fig. 15E). Mainly ventrally,

primary osteons are rare, relatively small, and weakly developed.

Here, the matrix is often almost opaque and the often simple

vascular canals are also longitudinally organized (Fig. 15F).

Growth cycles are very rare, but there are at least one to two

annuli/LAGs preserved in some sections.

Numerous small secondary osteons occur in the trabeculae

between the large pseudo-cavities as well as in the internal areas of

the periosteal compact bone wall, where they sometimes form

haversian tissue. Their abundance decreases towards the medial

side.

Quantitative Results
The combination and correlation of the fractional values of the

growth cycles for each group of cross sections resulted in a quite

consistent number of years represented by these cycles. Thus, the

combined growth cycles in femur group one (sections from the top

of the proximodistal shelf close to the middle of the shaft) represent

11 years, those of femur group two (sections from the base of the

fourth trochanter) represent 12 years (Fig. 16), and those of tibia

group one (sections well within the distal third of the shaft)

represent 11 years (Fig. 17). The only group for humeri represents

ten years recorded by all combined growth cycles (Fig. 18),

although several cycles were probably not recognized (compare

with Tab. 3). The remaining groups three and four in femora as

well as group two in tibiae contain only three to four cross sections

without enough preserved growth cycles for a secure correlation.

The Mark of Initial Sexual Maturity (MISM) in femora always

correlates with an age of approximately 9.5 years in femur group

one and 10.5 years in femur group two (Figs. 16; 19).

To calculate the respective body masses for the correlated

growth cycles with the Developmental Mass Extrapolation method

[27], and to calculate the sigmoidal growth curves, it was necessary

to calculate the maximum body mass. The largest femoral

specimen (MB.R.2144) represents a body mass of 115.3 kg using

the method of Anderson et al. [64] for bipeds. In the same way,

the respective body mass at the MISM was calculated as 32.44 kg

on average for femur group one and 31.96 kg for femur group

two.

By using the first nine (femur group one) to ten (femur group

two) secured growth cycle values, the respective values of the

MISM, and the maximum body mass, four sigmoidal growth

curves were created. The remaining growth cycle values,

representing unsecured growth cycles external to the MISM, were

plotted into the curves subsequently (Fig. 19). The manual shift of

these values by one year on average resulted in the ideal fit to their

respective growth curves. At the end, a total of 13 years of life of

Dysalotosaurus are represented by the observed and correlated

growth cycles in the femoral cross sections of groups one and two

(Fig. 19).

The now known values of the four parameters of each of the

four growth curves were used to calculate the respective values for

all known femora of Dysalotosaurus. The largest sampled femur

(SMNS F2, group two) would therefore represent an age of 16.5

years (body mass after [64]) or 16.3 years (body mass after [27]).

The age of the third largest femur found in the collections

(R12277) would then represent an age of 19.7 years (after [64]) or

19.3 years (after [27]) (Fig. 20).

The MISM is located well between the lower and middle third

of the growth curves, if body mass is plotted versus age (Fig. 21).

Thus, the growth rate of body mass is still accelerating after this
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mark and reaches its maximum in the 14th year with a daily

increase of 24 to 26 grams (for femur group two). However, by

plotting the respective values of the distal mediolateral width of

femora or their midshaft circumference (representing body size)

versus age, the MISM is then located very close to the inflection

point of the curve (between accelerating and decelerating growth

rate: Fig. 21). Finally, the relative body size of Dysalotosaurus at the

MISM reaches 62.1% for the femoral distal mediolateral width

and 63.4% for the midshaft circumference when compared to the

known maximum body size.

Discussion

Variation within Bone Tissues in Dysalotosaurus
Variation within bone tissues in Dysalotosaurus is exhibited

between different individuals, within the ontogenetic series, within

a skeleton, within a bone, and even within a cross section. This

variation also clearly demonstrates that comparative bone

histology is only significant when the sampling is standardized

among several skeletal elements and the relative ontogenetic stage

is considered (e.g. [6,36,38]).

Variation between Different Skeletal Elements. The

bone wall of the main weight bearing long bones (femora, tibiae)

of Dysalotosaurus are naturally thicker than in the sampled humeri,

fibulae, and prepubic processes. Interestingly, the relative growth

rate is also higher in these long bones compared to the other

sampled elements, which is inferred from the overall development,

density, and organizational degree of vascular canals (see e.g.

[8,36,39,41,46]). Femora and tibiae possess a comparatively

higher amount of well developed primary osteons and larger

areas with plexiform or even reticular vascularization than humeri

and prepubic processes. Thus, as in Maiasaura [36] and Plateosaurus

[32,33], different skeletal elements grow at different rates during

ontogeny.

A possible explanation for growth rate changes may be the

absolute size of the respective element within the skeleton

combined with the degree of utilization, which includes two

components: (1) the degree the element participates in weight

bearing and (2) the functional demand on the bone. In the case of

the biped Dysalotosaurus, the femur and tibia are the largest and

Figure 14. Variation in the bone histology of a single large
fibula of Dysalotosaurus. A–H: Large fibula GPIT/RE/5109, A – Internal
area of the posteromedial bone wall, under polarized light, with a thick
endosteal layer separating the possible medullary bone tissue from the
bone wall. B – Same as in A under normal light and slightly rotated. C –
Magnification of the left centre of A under polarized light. The CCCB
immediately external to the endosteal layer is much stronger
birefringent than the medullary bone tissue. D – Same as in C under
normal light. E – External part of the medial wall with only small simple
vascular canals and some weakly developed primary osteons. The
secondary osteons are rather large and different stages of development
are present. F – The same as in E under normal light. G – Close up of the
posterior corner with numerous secondary osteons obscuring most of
the remaining CCCB, under polarized light. H – The same as in G under
normal light. Scale bars = 1 mm in A–B. Scale bars = 500 mm in C–H.
doi:10.1371/journal.pone.0029958.g014

Figure 15. Orientated images of cross sections of prepubic
processes (d = dorsal, l = lateral) of Dysalotosaurus. A: SMNS P17,
proximal section under polarized light with decreasing size of the
pseudocavities towards the lateral side. B: SMNS P19, distal section
under polarized light. Note the double-layered order of the erosion
cavities dorsally and similar single layers of cavities medially and
ventrally, respectively. C–D: SMNS P17, C – Magnification of the dorsal
centre of A under polarized light showing primary bone tissue with
mainly longitudinal, small primary osteons even between the erosion
cavities. The latter already possess layers of lamellar bone. D – The same
as in C under normal light. E: SMNS P19, Close up of the dorsal primary
bone wall with mainly longitudinal but well developed primary osteons.
F: SMNS P17, Magnification of the lower centre of A with simple
vascular canals and very small, weakly developed primary osteons,
under both polarized and normal light. Resorption and secondary
infilling of cavities is visible at the top of the image. Scale bars = 1 mm
in A–B. Scale bars = 500 mm in C–E. Scale bars = 200 mm in F.
doi:10.1371/journal.pone.0029958.g015
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Figure 16. Fractional growth cycle values of femur group two are correlated to age. MISM = Mark of Initial Sexual Maturity. ‘F’ is the
abbreviation for ‘femur’. Each of the following numbers corresponds to the respective specimens in Tab. 1. Some specimens were sampled at least
twice so that additional letters (a, b) advert to the respective section used for this correlation.
doi:10.1371/journal.pone.0029958.g016

Figure 17. Fractional growth cycle values of tibia group one are correlated to age. ‘T’ is the abbreviation for ‘tibia’. Each of the following
numbers corresponds to the respective specimens in Tab. 2. Some specimens were sampled at least twice so that additional letters (b) advert to the
respective section used for this correlation.
doi:10.1371/journal.pone.0029958.g017
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primary weight-bearing bones intensively used for locomotion.

The humerus is comparatively much smaller (in the only preserved

individual ‘dy I’, exhibited in Berlin, app. 57% the length of its

femur) and was likely not used in weight bearing or locomotion. It

is therefore not surprising to find it less densely vascularized within

a relatively thinner bone wall. The sampled prepubic process is

even more different than the femur and tibia in these characters,

because it serves only as muscle attachment site and is not involved

in active movements or in bearing weight.

Similar tendencies are visible in other tetrapods, but it strongly

depends on their respective skeletal bauplan. The humerus of the

therapsid Diictodon reached higher relative growth rates than its

femur [65], because it was probably used for digging in addition to

weight bearing. This is also observed more extensively in the

common mole (Talpa europea) by Enlow & Brown [66], where the

large humerus is well vascularized and the much thinner cortex of

the smaller tibia is almost avascular indicating the tibia had a

much slower relative growth. It is not as simple in birds and

pterosaurs, because the demand on active forelimbs, mainly for

flying, against weight bearing hindlimbs is highly speculative.

However, there are at least indications that the absolute size of

bones in pterosaurs [67], in penguins [47], and in some dinosaurs

(see e.g. [32,36]) is correlated with relative growth rate in these

groups as well. Although there are no subsumable differences in

the vascularization pattern between elements in recent ratite

skeletons, the flightless habit almost predicts much lower growth

rates for the forelimb elements compared to the elements of the

hindlimb [41]. This is also comparable to biped dinosaurs, such as

Allosaurus (see e.g. [68]) and Dysalotosaurus, or facultative quadruped

dinosaurs with a strong size difference between fore- and

hindlimbs, such as Scutellosaurus [43].

Within a single limb, the bones of the stylopodium (humerus,

femur) have higher relative growth rates than the bones of the

zeugo- and autopodium, because the latter are often smaller in

overall size and share functions, such as weight bearing or muscle

activity, among each other. The absolute forces acting on each of

them are therefore smaller than in the stylopodium. This is the

case for the less vascularized radii and ulnae compared to the

humeri and femora in Thrinaxodon [69] and to the femora in

Scylacops [70], and for the ulnae of Allosaurus and Tenontosaurus

compared to the other sampled bones of the respective studies

[34,68]. Nevertheless, whenever bones of the zeugo- and

autopodium are fused (e.g. to the tibiotarsus and tarsometatarsus

in birds), are much more prominent than their neighbors (e.g. the

tibiae in many dinosaurs), or are exclusively used for powerful

movements (e.g. the wing phalanges of pterosaurs), their relative

growth rates should be more comparable to the bones of the

stylopodium (see [41], Dysalotosaurus [68], respectively). In all these

cases, the fused bones are also larger than usual.

In the end, the relative size of a bone in a skeleton reveals its

importance in weight bearing and/or movement and its relative

growth rate compared to other elements is therefore predictable to

a certain degree.

Variation between Different Cross Sectional

Units. Cross sections with very consistent outlines (especially

distal and mid diaphyseal humeri; Fig. 1) reveal much less

variation of bone tissues than cross sections with irregular outlines

and acute corners, such as femoral sections (Figs. 1–6), distal tibial

sections (Figs. 1G–H; 9; 12), and prepubic sections (Fig. 15). Some

of the intrasectional variation is caused by differences in bone wall

thickness. The thicker posteromedial and posterolateral corners in

femora and the anteromedial corner and medial bend in tibiae

Figure 18. Fractional growth cycle values of the single group of humeri are correlated to age. ‘H’ is the abbreviation for ‘humerus’. Each
of the following numbers corresponds to the respective specimens in Tab. 3.
doi:10.1371/journal.pone.0029958.g018
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have a high density of weakly-organized primary osteons (e.g.

Figs. 3A–B; 9C) and osteocyte lacunae. The collagen fibrils in

these areas are also hardly organized so that there is only a weak

birefringence under polarized light. Finally, the slow growing

zones are weaker and the distances between them are larger than

in the thinner bone wall units (see below; Fig. 1H, L). The opposite

trend of the noted features takes place in the latter (in the anterior

corner of femora and in the anterolateral corner of tibiae)

(Figs. 2E–F; 3E–F; 8C; 9A–B, E). A similar pattern can be seen in

the largest sampled femur of Dryosaurus altus [52].

The variation in relative growth rates due to variable bone wall

thickness is superimposed by another source of variation in

femora, distal tibiae, and proximal humeri. The anterior corner in

distal femora, the anterolateral corner in distal tibiae, and

sometimes the anterolateral corner in proximal humeri, consist

of an internal wedge of CCCB (femora, tibiae) or of endosteal

lamellae (mainly humeri). The external periosteal regions possess

here well organized primary osteons in a low density, osteocyte

lacunae are also rarer than in other units, and the collagen fibrils

are mainly transversely organized (Fig. 2E–F; 3E–F; 13C). All

growth cycles (including annuli/LAGs) are closer together (Fig. 1H,

L). The bone wall of the opposite side of the cross sections

(posterior bend in femora, medial sides in distal tibiae and

proximal humeri) is distinctly resorbed internally by the marrow

cavity (Figs. 1B, D, H, L; 2A–B; 5E) and is more similar to thick

bone wall units (Figs. 1B, D, H, L, 2A–D; 3A–B; 5C–D, F–G; 9C;

10C–F; 13G). Thus, the latter units were deposited by much

higher relative growth rates than the former units.

These differences in growth rate of opposing cross sectional

units are explained by the drift of the marrow cavity towards the

side with the suggested higher relative growth rate. The

combination with the bending orientation of the respective long

axes of the bone shafts indicates that the marrow cavity always

drifts from the convex side of the long axis to the concave side to

maintain the overall bone wall thickness during growth. The

convex side of the long axis is located anteriorly in femora and

laterally in distal tibiae and proximal humeri, respectively. This

also explains why there is still unresorbed CCCB left in the

mentioned units of relative slow growth, because this metaphyseal

tissue is necessary for a consistent bone wall thickness during

ontogeny [71]. For the same reason, juvenile bone tissue (small

longitudinal primary osteons, knitting pattern of the matrix) is still

preserved in the internal areas even in respective units of large

cross sections (Figs. 3G–H; 6E–H; 8C; 9A–B, E–G). The typical

intrasectional variation caused by osseous drift is well described in

Enlow [71] for rats and monkeys and is also shown for Varanus (see

figure 2E in [40]) and for the small lizard Gallotia (see figure 13 in

[5]). In contrast, this typical variation is rarely described in fossil

tetrapods, although it is documented in the multituberculate

mammal Nemegtbataar (see figures 6 and 7 in [72] and indicated in

the dinosaurs Scutellosaurus (see figure 2 in [43] and Psittacosaurus

[27]). As a result, cortical drift is supposed to be the normal case in

long bones with a bent long axis [8,71] and should be considered

before histological sampling, due to its strong influence on the

microstructure and on estimating growth rates.

Figure 19. The nine correlated growth cycle values of femur
group one and two were combined with the values of the
MISM and were used for the calculation of four growth curves.
All encircled values represent unsecured growth cycles external to the
MISM and were plot into the diagram afterwards. The shift of these
points onto their respective growth curves resulted in a graphical
change of only one additional year in age in average. Thus, 13 years are
finally represented by all visible growth cycle values. Abbr.: EFit1 –
Growth curve of femur group one, calculated with body masses derived
from Erickson & Tumanova [27]; EFit2 – Growth curve of femur group
two, calculated with body masses derived from Erickson & Tumanova
[27]; AFit1 – Growth curve of femur group one, calculated with body
masses derived from Anderson et al. [64]; AFit2 – Growth curve of femur
group two, calculated with body masses derived from Anderson et al.
[64]; Egroup1 – Correlated fractional growth cycle values of femur
group one, the respective body masses are derived from Erickson &
Tumanova [27]; Egroup2 – Correlated fractional growth cycle values of
femur group two, the respective body masses are derived from Erickson
& Tumanova [27]; Agroup1 – Correlated fractional growth cycle values
of femur group one, the respective body masses are derived from
Anderson et al. [64]; Agroup2 – Correlated fractional growth cycle
values of femur group two, the respective body masses are derived
from Anderson et al. [64].
doi:10.1371/journal.pone.0029958.g019

Figure 20. The four complete growth curves derived from the
values shown in Fig. 19. Abbreviations for the curves are as in Fig. 19.
The arrows separate the ontogenetic stages observed in the femoral
cross sections: II – Early juvenile stage; III – Late juvenile stage; IV –
sexually immature stage; V – sexually mature stage. The black point at
app. 16.5 years of age represents the largest sampled femur. The black
point at app. 19.5 years of age represents the third largest preserved
femur.
doi:10.1371/journal.pone.0029958.g020
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The described special bone tissue of the Posterolateral Plug in

femora (Figs. 4A–D; 5C–E), of the anterolateral corner in tibiae

and humeri (Figs. 9E, H; 13C), of the medial wall in fibulae

(Fig. 14E–F), and of the lateroventral corner in prepubic processes

(Fig. 15A–B), are suggested to be the result of muscle and/or

tendon forces acting on these cross sectional units. This is

indicated by the relationship of these special structures with

external processes or attachment sites for muscles. The tissue

structures also display the potential orientations of the acting

muscle forces, because Sharpey’s fibers are most abundant in these

units and the vascular canals are often oriented in a dominant

direction. These Plugs are also very restricted with sharp borders

(Figs. 4A–B; 5E; 9E; 15B) and show more secondary remodeling.

Scattered secondary osteons are sometimes even developed close

to the external surface, which is very unusual for the ‘normal’ bone

tissue in Dysalotosaurus independently of ontogenetic stage.

Such unusual restricted areas in cross sections are already

mentioned for the femur in Hypsilophodon and described for the

femur in Iguanodon [73]. There were also sharply delimited and

more strongly remodeled areas (also visible in Hypacrosaurus [38]) in

possible connection with muscle attachment sites. As in Dysaloto-

saurus, these special areas can also be sharply restricted to a certain

level in the shaft and vanish over a short distance within the shafts

long axis. Possible Plug-like structures are mostly known in the

literature as local areas with unusually intensive secondary

remodeling almost reaching the external surface (e.g.

[30,34,36,38,52]). Horner et al. [36] already noted the possibility

of muscle strain as a reason for these above-average remodeled

areas, which was also pointed out by Currey [74].

Variation of Growth Cycles. The number, relative

distances, and developmental degree of growth cycles are highly

variable in Dysalotosaurus. Their number is naturally strongly

influenced by ontogeny (the larger/older the more) and by the

primary bone wall thickness. This can be seen between different

elements of the skeleton. The thickest primary bone walls are

developed in femora and tibiae with 12.5 and 11 mm, respectively.

These elements preserve the highest number of growth cycles,

which counts up to nine in the largest sections alone and up to 12

after ontogenetic correlations in all sections. Humeri, which have a

maximum primary bone wall thickness of 5.3 mm in the samples,

have only up to five cycles in a single section and up to ten after

the correlation. The much thinner primary bone wall in the

prepubic process can preserve only two cycles at maximum. The

relative distances between growth cycles are also dependent on the

cutting level within the shaft, because the average thickness of the

periosteal bone wall is increasing towards the mid diaphysis and

the portion of CCCB at the total bone wall thickness is here

insignificant [8,71]. The resulting differences in the course of

calculated growth curves derived from these distances are even

stronger between cutting levels than between methods for

calculating body mass (Fig. 20).

In contrast to the results of Chinsamy [18], there are indeed

annuli/LAGs preserved in Dysalotosaurus, but they are rather rare,

especially in femora (Tab. 1). They are slightly more abundant in

tibiae and prepubic processes and most abundant in humeri

(Tabs. 2; 3). There is also no distinct pattern predicting the

occurrence of annuli/LAGs, because a medium-sized femur can

possess a LAG and a large femur none at all (Fig. 1B, D). In tibiae

and humeri, the number of LAGs increases with increasing bone

wall thickness, but this is the same pattern as for all growth cycles,

and LAGs are only part of them (see e.g. Fig. 13E–F).

Interestingly, some of the prepubic processes, with their extremely

thin primary bone wall, possess more annuli/LAGs than the thick-

walled femora.

Figure 21. In contrast to the diagrams with body mass versus age, the MISM is almost exactly positioned at the inflection point in a
curve with body size versus age. Measured and calculated values of the distal mediolateral width of femora are combined. The age values are an
average of the respective values calculated by the methods of Anderson et al. [64] and Erickson & Tumanova [27].
doi:10.1371/journal.pone.0029958.g021
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Thus, the development of annuli/LAGs in the sampled skeletal

elements of Dysalotosaurus seems to be dependent on several factors,

where relative growth rate (the lower the more) might be

dominating over bone wall thickness. In elements with relatively

high growth rates (femora, tibiae), only unfavorable environmental

conditions (e.g. long draughts) or dramatic events in the

individual’s life history (e.g. injury, disease) may have resulted in

the rare development of annuli/LAGs.

The relatively random and rare formation of clearly defined

annuli/LAGs is in striking contrast to the pattern seen in many

other dinosaurs. In theropods (e.g. [25,28,75]), mainly primitive

and/or smaller sauropodomorphs (e.g. [29,32]), and some

ornithischians studied (e.g. [27,34,36,38]), annuli/LAGs occur

much more regularly and not as an exception, as in Dysalotosaurus.

Especially large and derived sauropods have much weaker cycles,

such as polished lines [57] or zonal differences in vascularization

[37,56,76], which are assumed to be annual markers as well.

None of these studies have mentioned the kind of growth cycles

found here. Their identity as possible annual markers is now,

however, unambiguously demonstrated. Despite the often rela-

tively weak appearance (Figs. 2A–D; 5C–H; 10E–F; 13F), the

cyclic occurrence of fast and slow growing zones is striking. As for

annuli/LAGs: (1) their preserved number increases with related

body size and is quite constant (with a maximum deviation of 2)

throughout a single ontogenetic stage of a certain element (see also

Tabs. 1–3); (2) the thickness of the slow growing zones is relatively

constant, whereas the fast growing zones become thicker in the

thick bone wall units and thinner in the thin bone wall units; (3) the

zonation becomes weaker in thicker bone wall units and more

distinct in thinner units of a cross section; and (4) the plot of the

maximum growth rate with age, which is derived from the

correlated growth cycles under the assumption of their annual

signal, fits almost perfectly into the linear regression line of

maximum growth rates developed for dinosaurs (Fig. 22, see also

[7,77,78]). Cyclical fluctuations found in juvenile Maiasaura [36],

in Hypacrosaurus [38], and in Coelophysis [79] are probably another

kind of growth cycles, but their significance as annual markers is

questioned by these authors and has still to be proved.

It is important to note that the type of growth cycles described

for Dysalotosaurus probably exists in a wider range of taxa, because

the cyclicity between zones of oriented collagen fibrils is also

mentioned in Alligator ([59] see figures 2J–L; 3I–K; 4 therein), and

is probably present in an extinct crurotarsian (pers. comm.

Bronowicz, 2009) and in Tenontosaurus (pers. comm. Werning,

2010). Thus, this kind of growth cycles will probably be found in

more tetrapods in the future and should provide age estimations

especially in taxa with an otherwise poor record of annuli/LAGs.

Correlation and Comparison of Ontogenetic Growth
Stages

Since all the sampled elements are isolated and microstructural

details vary between different elements of a skeleton, the

correlation of ontogenetic stages in femora, tibiae, and humeri

of Dysalotosaurus is only preliminary.

The second ontogenetic stage of all three elements (early

juvenile or juvenile stage; Figs. 8A–D; 12) compares favorably,

because each section belongs to the smallest available specimens

and is located close to, or at, the left margin within the respective

size-frequency distribution (Fig. 23). Furthermore, primary osteons

are often incompletely developed (in humeri more advanced but

very small; Fig. 13B, D), there is not more than one completed

growth cycle, secondary osteons are extremely rare, and

histological differences between sectional units are weak (Fig. 8A–

D; 12). This correlated juvenile stage is similar to large nestlings in

Maiasaura [36], to small juveniles in Orodromeus [52], and is located

in between the perinate and juvenile stages of Dryosaurus [52].

Figure 22. By comparing the maximum growth rate of Dysalotosaurus with other dinosaurs and recent animals, it is located close to
the regression line for dinosaurs and is very similar to large marsupial mammals (modified from [77]). Abbr.: Sd – Shuvuuia deserti; Pm –
Psittacosaurus mongoliensis; Sr – Syntarsus rhodesiensis; Mc – Massospondylus carinatus; Mp – Maiasaura peeblesorum; Ae – Apatosaurus excelsus.
doi:10.1371/journal.pone.0029958.g022
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The correlation of the older stages is more difficult, because

there are different numbers of distinguishable stages in femora,

tibiae, and humeri. Femora in the third and fourth stage of

development (late juvenile (Figs. 3E–F; 6F; 8E–H) and sexually

immature stages (Figs. 1C–D; 2E–F; 5A–B; 6G–H) are correlated

with the third stage of tibiae (late juvenile to sexually immature

stage (Figs. 1E–F; 10C–F), and the post-juvenile stage of humeri

(Figs. 1I–L; 13A–B, D, G). Individual cross sections in humeri are

only assignable to either sexually immature or sexually mature

stages by their absolute size within the two-peaked size-frequency

distribution of the Dysalotosaurus herd (Tab. 3). The respective cross

sections of femora, tibiae, and humeri possess more than one

growth cycle (up to five in the fourth femoral stage), the vascular

pattern of vascular canals is mainly laminar to plexiform, primary

osteons are abundant and well developed, secondary osteons, Plug

structures, and osseous drift are present, and the cross sectional

units are well diversified (less prominent in humeri). The closest

similarities to described growth stages of other ornithopods were

found in the large juvenile and subadult stages of Orodromeus [52],

the juvenile and smallest subadult stages of Dryosaurus [52], and the

juvenile stage in Maiasaura [36]. Both the late juvenile stage and

sexually immature stage of Dysalotosaurus femora are also similar to

the subadult stage in Orodromeus and to the small subadult stage in

Dryosaurus.

The last represented ontogenetic stage is considered here as the

sexually mature stage. This is clearly different to somatic maturity,

because none of the sampled specimens show an External

Fundamental System (EFS) as a sign for ceasing growth [6,7]. In

that sense, all sampled large specimens would represent somati-

cally subadult individuals. The differentiation to younger stages is

unambiguous in femora and tibiae, but only the absolute size and

the position within the two-peaked size-frequency distribution of

the Dysalotosaurus herd are helpful in humeri (Fig. 23; Tab. 3).

Shared features of the sexually mature stage are well diversified

cross sectional units with strong differences in bone wall thickness

(less distinct in humeri), numerous growth cycles (up to nine in

femora, seven in tibiae, five in humeri), often interrupted by

strongly developed Plug structures (Figs. 1B, H; 4A–B; 5C–E; 9E),

numerous and dense primary osteons, more abundant secondary

osteons (Figs. 2G–H; 4C–D; 9H), and highly advanced osseous

drift (Figs. 1B, H, L; 2A–B; 5E; depends especially in humeri on

cutting level). This ontogenetic stage is comparable to the subadult

stage in Orodromeus and the medium-sized subadult femur of

Dryosaurus [52]. It does not match the subadult stage in Maiasaura

due to the lack of extensive remodeling in the deep cortex and the

lack of a starting EFS [51].

The ontogeny of the bone histology in Dysalotosaurus is most

similar to Dryosaurus [52] regarding the overall size of skeletal

elements as well as the respective cross sectional dimensions,

vascularization pattern, and degree of secondary remodeling.

Orodromeus, on the other hand, reveals a vascularization pattern,

which is usually found in skeletal elements of Dysalotosaurus with

relatively lower growth rates, such as humeri or prepubic processes

(Figs. 13; 15E–F). There, mainly longitudinal and smaller primary

osteons are common, which are well described for Orodromeus

[43,52]. LAGs are also more common as in Dysalotosaurus and a

possible EFS is known, which indicates nearly cessation of growth

in the somatically mature adults. It confirms that this ornithopod,

which has reached a smaller maximum body size than

Dysalotosaurus, grew with a lower overall growth rate than the

latter genus (other examples are e.g. [41,43,77,80]).

The opposite case is the much larger hadrosaur Maiasaura. The

vascularization pattern is not very different, but the thicker

primary bone walls experienced more intensive secondary

remodeling. Large and widespread resorption cavities or dense

Haversian bone, which can obscure the primary bone in the

deeper cortex, is completely unknown in the sampled elements of

Dysalotosaurus. The intensity of secondary remodeling is therefore

probably not only an indicator of individual age and longevity (e.g.

[57,81]), but also an indicator of maximum body size [82]. This is

probably the case in primates (compare e.g. Castanet et al. [83]

and Burr [84] with Mulhern & Ubelaker [85], see also Singh et al.

[86]), ornithopods (see above), and sauropodomorphs (compare

e.g. Klein [32] with Klein & Sander [81]). The comparison of the

largest sampled femur of Dysalotosaurus (33cm calculated length)

with the largest femur of Dryosaurus (49cm length; see [52]), which

shows much more extensive secondary remodeling, either

confirms this assumption, or the latter was indeed individually

older than the former [82]. This femur is even larger than the

largest preserved, Dysalotosaurus femur, which has a calculated

length of 38 cm. Together with the observations of increasing

secondary remodeling within the ontogenetic stages of Dysaloto-

saurus, the influence of individual age on remodeling intensity is

probably most important, but maximum body size might be an

additional factor.

Finally, Horner et al. [52] noted that the largest Dryosaurus

femur was still actively growing, because it lacks an EFS and

therefore belonged to a somatically subadult individual. If this is

true, then even the largest known individuals of Dysalotosaurus were

still somatically subadults.

The Life History of Dysalotosaurus
The embryonic or perinatal ontogenetic stage is not preserved

in Dysalotosaurus, but the longitudinal section of the smallest known

femur (Fig. 7D–F) belonging to the early juvenile stage is very

distinctive regarding possible behavior of hatchlings. This stage is

very similar to the structures described for younger stages of

Orodromeus and Troodon [51], although the pads of calcified cartilage

reach naturally much deeper at this early ontogenetic stage than in

the sample of Dysalotosaurus. It is also in strong contrast to the

situation seen in some hadrosaurs [51] where pads of calcified

cartilage are not constricted to the preserved epiphysis, but reach

through the whole metaphysis into the diaphysis. Endochondral

bone is here much rarer and apparently lacks transverse struts

crossing the long tubular structures, which consist of connected

cartilage canals and marrow processes. In the large nestling of

Maiasaura [36], thin coatings of endochondral bone are developed

along the wall of the marrow processes, but noticeable transverse

Figure 23. Size-frequency distribution of all measured right
femora. The MISM is located at a femoral distal mediolateral width
(DMW) of app. 55 mm (compare the DMW values with age in Tab. 1).
doi:10.1371/journal.pone.0029958.g023
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struts were only observed deeper within the metaphysis. Since

large nestlings of Maiasaura are here tentatively correlated with the

early juvenile stage of femora in Dysalotosaurus, the degree of

epiphyseal ossification in Dysalotosaurus at this stage was strongly

different from Maiasaura and other hadrosaurs, but similar to

Orodromeus and Troodon, which would implicate precociality in

Dysalotosaurus hatchlings [51,87]. Thus, they could follow their

parents short after hatching, but experienced rather moderate

growth rates compared to the probably semi- to fully altricial

hadrosaurs [51]. By the way, the precocial behavior is also

assumed for the closest relative of Dysalotosaurus, Dryosaurus altus,

whereas an embryo of the larger taxon Camptosaurus was probably

altricial similar to Maiasaura [88].

Moderate growth rates are visible in the four growth curves of

Dysalotosaurus (Fig. 20). The early and late juvenile stages of the

femur cover the moderately sloping part of the growth curves up

to approximately six years of age. The sexually immature stage

correlates with the age of six up to ten years. The latter date

most likely marks the initiation of sexual maturity and therefore

separates the sexually immature members of the Dysalotosaurus

herd from the sexually mature individuals. This hypothesis was

derived from five out of the six sampled large femora belonging

to the most mature histological ontogenetic stage observed (see

above). A mark or transition (MISM) is visible in these cross

sections (Figs. 1B; 4A; 5E–F; 6A–E). This demarcation shows an

overall slow-down of bone apposition rates (the usual fast

growing zones are weak or absent), which interestingly starts in

each of the five concerning femora at almost the same relative

position within the cross sections (Figs. 6E; 16; 19; 20). Thus, this

mark represents not an individual event, but a real physiological

signal indicating an important change in the life history of

Dysalotosaurus.

The achievement of sexual maturity is the most likely

explanation supported by several reasons: (1) This event is

commonly combined by a slow-down of growth rate in many

other tetrapods (e.g. [7,57,62,89,90]); (2) The timing of sexual

maturity occurs well before somatic maturity as in other dinosaurs

(e.g. [32,57,62,75,91]); (3) This event plots in diagrams with body

size versus age almost exactly at the curves point of inflection ([62]

but see below); (4) The preservation of medullary bone tissue in a

large fibula and a large tibia (Figs. 11; 14A–D), which belong to

the group of large individuals in the size-frequency distribution

(Fig. 23; Tab. 2); and (5) By correlating the respective value of this

mark with femoral size, the mark plots well within the gap between

the dominating groups of small and large individuals of the

Dysalotosaurus herd (Fig. 23).

This gap shows the underrepresentation of individuals and is

probably the result of banishment and/or increased mortality of

this size class. In recent and at least temporarily gregarious

ungulate mammals, young males predominantly suffer increased

mortality around the time of sexual maturity, because they are

driven out of the herd very early by prime-aged males (e.g. Impala

[92]) or they leave on their own (e.g. Kudu [93]). They are then

vulnerable to predators and have higher stress levels due to their

low rank within bachelor herds. In other species, young males

suffer high mortality during their first rut (e.g. bighorn sheep [94]

and rhinos [95]). Young females also suffer increased mortality due

to inexperience in reproduction, high reproduction costs, and

competition with prime-aged females (e.g. red deer [96]). Higher

mortality rates resulting from early sexual maturity were also

suggested for the tyrannosaur Albertosaurus [91]. Thus, the position

of the mark right within the gap of the size-frequency distribution

(Fig. 23) supports the assumption that it is indeed the Mark of

Initial Sexual Maturity (MISM).

The decrease in bone apposition rate observed in the cross

sections at the MISM apparently conflicts with its relative position

within the growth curves (body mass versus age; Fig. 20), because

it is located here within the lower third of the exponential growth

phase and growth rate is still accelerating. This is similar to other

dinosaur taxa, where the time of sexual maturity is strongly

indicated by the occurrence of medullary bone [62] and/or

increased midlife mortality [91]. The time of sexual maturity for

Tenontosaurus (8 years) and Allosaurus (10 years) is located, as in

Dysalotosaurus, within the lower third of the exponential growth

phase and not at the curves point of inflection, where growth rate

reaches its maximum [62]. In the case of Tyrannosaurus, the

estimate of 18 years is close to the inflection point, which is similar

to Albertosaurus (compare [42] with [91]), although the exact time of

sexual maturity is probably an upper bound for Tyrannosaurus [62].

It is suggested that the phenomenon of contradicting features in

Dysalotosaurus is an effect of allometric scaling between increasing

body mass and increasing body size (including bone apposition),

where the ratio would be 8:1 (compare also Box 3a with 3b in [7]).

Furthermore, the scaling effect of body mass is neutralized by

plotting a variable representing body size versus age (Fig. 21),

where the time of sexual maturity in Dysalotosaurus is indeed located

almost exactly at the curves point of inflection.

It should also be noted that the MISM is completely absent in

all large tibiae and humeri of respective position within the size-

frequency distributions. This indicates an only moderate slow

down of bone apposition rate, which is probably not visible in

elements of slightly lower relative growth rates compared to the

rates in femora. Finally, the relative body size at time of sexual

maturity compared to maximum known body size in Dysalotosaurus

is approximately 62 to 64%, which is strikingly similar to the

remarked 60% to the recorded maximum size known in

Albertosaurus [91] and close to the estimated value of 70% in

Barosaurus [57]. Thus, the apparent contradiction between

decelerating bone apposition and accelerating body mass in

Dysalotosaurus in young sexually mature individuals is treated here

as rather insignificant.

The location of the largest sampled femur (SMNS F2 – group

two) within the growth curves is well below the estimated

asymptote at approximately 16.4 years of age (Fig. 20). Additional

features of still active growth are the open vascular canals at the

periphery, well vascularized tissue in the external bone wall areas,

and the complete absence of an EFS. The third largest known

femur (R12277) is also located below the asymptotic level of the

growth curves indicating that this individual has also not reached

somatic maturity. The subsequent sampling of the largest known

femur (MB.R.Ig374; similar to the specimen used to calculate

maximum body size and mass (MB.R.2144)) also revealed still

active growth. The absence of EFS in a much larger femur of the

closely related taxon Dryosaurus altus [52] suggests that this species

obviously grew to larger body sizes than Dysalotosaurus and that

both taxa most likely experienced indeterminate growth as

Chinsamy [18] already suggested.

Many of the Dysalotosaurus individuals could be reproductively

active for more than five years, but none of them obviously

reached somatic maturity. Dysalotosaurus was highly vulnerable to

most of the contemporaneous predators due to its relative small

body size and the lack of any defensive structures (as in

Kentrosaurus). This may be a reason, why sexual maturity was

delayed until the ninth year of life. The cost of reproduction was

too high for small individuals due to high vulnerability to

predation.

Another factor for the high mortality rate around time of sexual

maturity and, especially, the prolonged exponential growth phase
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in sexually mature individuals might be intraspecific competition

within a herd. Larger/stronger individuals surely had a more

dominant role within the herd and a better chance for

reproduction than smaller/weaker individuals. Fast and extended

indeterminate growth could therefore be regarded as a survival

advantage for Dysalotosaurus.

Implications for the Growth Pattern in Other
Ornithopods

Like in some other small ornithopods and many sauropods

[18,37,48,52,55,56,57,76,80,97] Dysalotosaurus exhibits a growth

pattern, where annuli/LAGs as representatives of a zonal bone

tissue are rather scarce, completely absent, or are replaced by less

obvious growth cycles. On the other hand, large ornithopods,

other ornithischians, prosauropods, and all theropods more

derived than Herrerasaurus (see [6,18]) show a relative consistent

growth pattern with annuli/LAGs representing the usual kind of

growth cycles (e.g. [25,27,28,32,35,36,38,68,75]).

Klevezal [22] has found a relationship between the abundance

and uniformity of annuli/LAGs and environmental conditions in

recent mammalian populations, which could partially explain the

sorting of dinosaurs into such multiform groups. Populations

inhabiting regions with strong seasonality consist mainly of

individuals with distinct and weakly variable annuli/LAGs in

their recording structures (e.g. bone microstructure), which is

mostly a two-phase annual rhythm. In contrast, populations of the

same species, inhabiting regions with moderate conditions, exhibit

mostly weakly-developed annuli/LAGs and a higher variability in

number (poly-phase annual rhythm). However, exceptions always

occur. So, although it is likely that a single fossil specimen

represents the usual growth pattern of its population, it is also

possible that it represents the anomalous minority. An unusual

growth pattern found in a single specimen should therefore be

treated with caution (see [48,52,98]).

The regular development of annuli/LAGs in highly seasonal

regions is advantageous compared to irregular cyclicity, because

the former is synchronized to the seasonal changes of environ-

mental conditions. Irregular or asynchronous growth is disadvan-

tageous in strongly seasonal regions, because growth phases

reaching into harsh times cost naturally more energy than arrested

growth. Poly-phase growing individuals have therefore to fit their

growth regime to the seasonal conditions or die. In less seasonal

regions, it does not matter, which growth regime an individual

possess, because the effects on its energy balance is not so

disadvantageous and the variability of growth patterns in the

population is therefore much higher [22].

The results for Dysalotosaurus have shown that the abundance

and development of annuli/LAGs depends either on relative

growth rate (annuli/LAGs in faster growing femora are less

abundant) and environmental conditions (by far not all growth

cycles are completed by an annulus/LAG). For the Tendaguru

region with its reconstructed seasonal change of humidity [15],

long droughts would be such harsh times accompanied by a

shortage of food and water. This is also indicated by the

depositional area of the Tendaguru Beds, which are very unlikely

to be the usual habitat for the preserved dinosaurs [17].

LAGs are obviously more common in ornithopods than

previously thought [98] and completely azonal bone is rather

unlikely (in contrast to e.g. [6,18,48]). LAGs occur in Orodromeus,

Dysalotosaurus, Tenontosaurus, and Maiasaura at first in the late

juvenile stage (this study and [34,36,52]). In Dysalotosaurus, LAGs

are very rare and close to the periphery at this stage (except in

humeri). The first LAG in Tenontosaurus is also not consistently

developed in all specimens and is sometimes substituted by a

band of differing oriented collagen fibrils [34]. In Dryosaurus altus,

LAGs were found in all three subadult femora, but at non-

overlapping relative positions indicating at least three different

growth cycles for the two smaller specimens and up to 15, if one

includes the largest femur and calculates the number of LAGs by

back counting [52]. If Dryosaurus is indeed similar to Dysalotosaurus

in its growth pattern, which is implicated by a similar

vascularization pattern and the absence of an EFS, then the

number of developed LAGs would be still rare in the large

femora of Dryosaurus. In Dysalotosaurus, ten out of 14 femora

(excluding the juvenile stages) bear one (in one case two) LAG or

annulus (Fig. 5A–B), respectively (in Tab. 1 six out of nine,

excluding the femora not usable for the age calculations), but

these annuli/LAGs represent at least three to four non-

overlapping positions, which confirms a very inconsistent and

highly variable growth pattern. It is therefore possible that

Chinsamy [18] sampled specimens, where LAGs are not

developed among the other growth cycles.

Orodromeus differs from both Dysalotosaurus and Dryosaurus by its

lower overall growth rate (see above) and the presence of an EFS

in the largest individuals [52]. Another difference is the quiet

consistent development of LAGs in the tibiae and femora of

subadult and adult individuals. This could be the consequence of

overall lower growth rates in Orodromeus [52]. The development of

LAGs is more likely, because the seasonal slow-down in growth

starts from an already lower level than in Dysalotosaurus and

Dryosaurus. However, Orodromeus seems to be rather an exception

among small to medium-sized ornithopods regarding its growth

pattern, although LAGs and annuli were recently also found in

small ornithopods from high latitudes [98].

The age of Orodromeus at the beginning of somatic maturity is

estimated by Horner et al. [52] at five to six years. This is relatively

short for a dinosaur of this size, because other small dinosaur taxa

reached ages of at least nine and eight to 18 years, respectively

[27,75]. Scheetz [53] described four additional bands of highly

birefringent bone tissue alternating with weakly birefringent

darker bands in a juvenile femur of Orodromeus (see also figure

2C in [52]). At a first glance, it has some similarities to the

alternation of fast and slow growing zones in Dysalotosaurus,

although such a suggestion should be treated with caution. If these

bands are indeed annual cycles, than the age of Orodromeus would

be about ten years at time of reaching somatic maturity. This

would fit much better to the estimated ages of other small

dinosaurs.

The three larger ornithopods Tenontosaurus, Maiasaura, and

Hypacrosaurus developed much higher numbers of LAGs in the

subadult and adult stages than Dysalotosaurus and Dryosaurus before

reaching somatic maturity [34,36,38]. They experienced very high

growth rates during the juvenile stages (e.g. [36]), as the growth

curve of Tenontosaurus also shows in comparison to the averaged

growth curve of Dysalotosaurus (Fig. 24). Thus, all three large

ornithopods had higher initial and juvenile growth rates and

reached their asymptotic growth plateau relatively earlier than

Dysalotosaurus and most of the other small ornithopods.

By using the mentioned relationship between strength of

seasonality of environmental factors and occurrence and unifor-

mity of annuli/LAGs [22], the abundance of numerous annuli/

LAGs in subadults and adults of larger ornithopod taxa would

indicate higher seasonal stress than in the smaller Dysalotosaurus

and Dryosaurus. Another example is the absence of annuli/LAGs in

the small Proctor Lake ornithopod compared to their occurrence

in a large hadrosaur of the same locality [55]. The zonation in just

a single femur of Gasparinisaura (assuming that the others lack it

[54]) probably represents similar intraspecific variation of cyclical
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growth patterns than in Dysalotosaurus, although LAGs are even

completely unknown.

Thus, many small ornithopods had probably less seasonal

environmental stress than large ornithopods and different growth

patterns had existed in large and small taxa, respectively. Two

reasons are proposed for these differences:

(1) Food demands and migration: Small ornithopods were predom-

inantly selective low-browsers [99] and probably not able for

supra-regional migration [100]. They needed less absolute

amounts of food than large ornithopods, which would also have

a weaker effect on their growth rates during dry (or cold) seasons

than in large taxa. The ability to alternative nutrition, such as

insectivory [20,53], might also have played a role. Large

ornithopods cleared their local habitat of food much faster than

small ornithopods, not only, because of their higher absolute food

demands, but also due to their much more effective chewing

ability (e.g. [101,102]) and their assumed gregarious behavior (e.g.

[101,103,104,105]). For many of them, migration was therefore

essential to survive and this meant additional seasonal stress.

Furthermore, some small ornithopods were probably able to

endure bad times by specialized adaptations, such as the fossorial

Oryctodromeus ([106], see also [107]), to which larger ornithopods

were unable to do so [100]. However, the recent discovery of

annuli/LAGs in the small polar ornithopods from southern

Australia ([98] in contrast to [48]) demonstrates that even low

seasonal liability did not prevent them from the severe polar

winters of their habitat so that they had to stop growth for saving

vital energy during the dark season.

In conclusion, higher food demands and seasonal migration of

large ornithopods could be one reason for the much more

consistent development of annuli/LAGs in their long bones

compared to small ornithopods. Exceptions may be the ornitho-

pods Telmatosaurus and Zalmoxes, which are treated as secondarily

downsized taxa due to their restricted island habitat [108].

(2) Breeding strategy and courtship/rut: Dysalotosaurus, Orodromeus, and

other smaller ornithopods were probably precocial as hatchlings

(see above; [51,55]), whereas hadrosaurs were mainly altricial

[36,51,104]. Parents of precocial offspring only have to care for

the eggs and have to protect and lead the young within the herd.

The latter task could also be managed by other members of the

herd, so that the individual stress of single parents was even lower.

Altricial behavior, in contrast, means the possibility of extraordi-

nary high juvenile growth rates on the one hand, but also more

stress for the caring parents on the other hand. Parents of an

altricial offspring have to feed their young and have to protect

them against other members of the colony as well as against

carnivores of all sizes. Colonial nesting is also a stress factor in

itself, because many individuals are concentrated in a compara-

tively small area [104]. In addition, at least the sexually dimorphic

lambeosaurine hadrosaurs could have had a seasonal rut or

courtship [101], which also would mean higher seasonal stress for

sexually mature individuals. Thus, the large hadrosaurs likely

suffered much more stress as sexually mature individuals, but their

altricial behavior equalized this disadvantage due to the ability to

outgrow other dinosaurs as juveniles, especially all contempora-

neous theropods [49]. The growth pattern of Tenontosaurus

([34,62]; Fig. 24) is similar to hadrosaurs, so that altricial behavior

can be assumed as well. Thus, altricial behavior was probably one

of the key strategies within Ornithopoda to become large in a short

time and the resulting growth pattern (higher juvenile growth

rates, early sexual and somatic maturity compared to small

ornithopods, consistent development of annuli/LAGs) reflects this

seasonally much more stressful strategy.

It is important to note that the remarks on the reasons for

different growth patterns in ornithopods are tentative hypotheses.

The variability of growth patterns, especially in smaller ornitho-

pods, is striking and ontogenetic histological studies of more taxa

are urgently needed to strengthen or disprove them. Nevertheless,

the occurrence and/or consistency of annuli/LAGs in ornithopods

is dependent on a mixture of absolute growth rates (which depends

on maximum body size), relative growth rates (depends on the

sampled skeletal element and its ontogenetic stage), the degree of

seasonality of the respective habitat, and the liability of the taxon

to seasonal effects including temperature, humidity, food supply,

migration, and behavior (e.g. precocial or altricial breeding

strategy). Phylogeny plays a rather unimportant role, as already

indicated by Werning [34].

Conclusions
The large amount of specimens, representing a wide range of

ontogenetic stages, offered the unique opportunity to learn more

about the modes and reasons of variation in bone tissues and

allowed insight into the growth pattern and life history of the

ornithopod dinosaur Dysalotosaurus. For this purpose, up to 70

individual bones were sampled, comprising femora, tibiae, humeri,

fibulae, and prepubic processes.

Variation within the bone tissue was mainly found between

different skeletal elements and between different units of single

cross sections. The former is the result of different relative growth

rates, which are dependent on the individual size of a certain

element and its degree of utilization within the skeleton. Skeletal

elements with a large absolute size, with main weight bearing

functions, and elements intensively used for movements (e.g. for

locomotion) experience higher relative growth rates than other

elements. Some elements have of course combined these

characters, which explain the highest growth rates in the femur

for instance. Accordingly, the only predictable model on the

occurrence of annuli/LAGs in Dysalotosaurus is their increasing

abundance in skeletal elements with lower relative growth rate.

The number of growth cycles naturally increases during ontogeny,

Figure 24. Comparison of growth curves of Tenontosaurus tilletti
(derived from table 2 in [62]) and Dysalotosaurus lettowvorbecki.
*Note that the maximum body mass of Tenontosaurus is app. ten times
higher than in Dysalotosaurus. Thus, for a better comparison, the body
mass values of Tenontosaurus were divided by 10 and then used for the
growth curve calculation.
doi:10.1371/journal.pone.0029958.g024
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but this definitely is not the case for annuli/LAGs. The

extraordinary variation in the development of annuli/LAGs in

Dysalotosaurus eliminates prediction of their existence and relative

number in skeletal elements of different ontogenetic stages.

Intra-cortical variation in bone tissue is mainly the result of

osseous drift and variation in bone wall thickness during growth.

The relationship between osseous drift, bone wall thickness, bone

tissue variation, and resulting relative growth rates, can now be

better defined:

N A long bone with a bended long axis experiences osseous drift

from the convex to the concave side of this long axis.

N Relative growth rates, derived from the organizational degree

and the density of vascular canals, are lower on the convex side

of the bended long axis and higher on its concave side.

N Growth rates are also relatively higher in thicker cross sectional

units than in thinner units.

N Variation in bone tissue within a cross section decreases the

more consistent and round the transverse shape of a bone is. A

shaft with a triangular transverse outline contains more

variation than a shaft with a circular transverse outline.

N In the case of partial sampling of a bended long bone, the part

with the best potential record of ordinary bone tissue and

growth cycles is the flat wall on its concave side.

The bone histology of Dysalotosaurus is most similar to Dryosaurus

altus in respect of ontogenetic stages, rarity of annuli/LAGs,

variation of bone tissues, low degree of secondary remodeling, and

the absence of an External Fundamental System. This confirms

the close relationship and a similar growth pattern and general life

style of these taxa.

A new type of growth cycles was used to reconstruct the life

history of Dysalotosaurus, despite the scarcity and variability of

annuli/LAGs. Growth curves of femora (derived from this

alternation of fast and slow growing zones) revealed that

Dysalotosaurus grew with a moderate rate in its juvenile stage until

approximately six years of age, experienced accelerated growth

during its sexually immature stage until reaching sexual maturity

at approximately ten years of age, and had its exponential growth

phase as sexually mature individual until the 14th year of life,

where the maximum growth rate was reached. Afterwards, the

growth rate decelerated and might have reached asymptotic

growth well after 20 years. However, most likely none of the

members of the Dysalotosaurus herd reached the growth plateau of

somatic maturity.

The group of large individuals within the size-frequency

distribution obviously consists of sexually mature individuals,

because medullary bone was found in a tibia and a fibula of this

size range. The time of initial sexual maturity was discovered as a

transitional mark (MISM) in five large femora representing a slight

slow-down of bone apposition rates.

Indeterminate growth, combined with delayed sexual maturity,

is assumed to represent the optimal growth strategy of Dysaloto-

saurus to withstand intra-specific competition and its high liability

for predation.

The results of the bone histological study of Dysalotosaurus were

finally combined with a relationship between abundance and

consistency of annuli/LAGs in recent mammals and their

respective seasonal environment. Smaller species of ornithopods

are less exposed to seasonal effects than the large species mainly

based on differences in food demands, growth rates, and breeding

strategy. In fact, the achievement of large size within Ornithopoda

was probably linked to a change in breeding strategy from

precocial to altricial behavior.

Materials and Methods

The key literature for an introduction into bone histology,

where also the here used terms are explained, comprises Castanet

et al. [5], Chinsamy-Turan [6], Erickson [7], Francillon-Vieillot

et al. [8], Klevezal [22], and Ricqles et al. [10].

The sections used by Chinsamy [18] could not be re-examined,

so that this study is completely based upon newly produced thin

sections.

30 femora, 12 tibiae, 13 humeri, seven fibulae, and eight

prepubic processes were sampled, but not all of the obtained thin

sections were well preserved. Thus, 11 femora, two tibiae, and four

humeri were inappropriate to be considered for measurements and

correlations and are therefore also not included in the Tables 1, 2,

and 3.

Location and Production of Thin Sections
The bones used for thin sectioning were loaned from the

collections of the Geowissenschaftliches Zentrum, University of

Göttingen (GZG), the Staatliches Museum für Naturkunde,

Stuttgart (SMNS), and the Institut und Museum für Geologie

und Paläontologie, University of Tübingen (GPIT). Measurements

of additional specimens were also made in the Museum für

Naturkunde, Berlin (MB) and the Natural History Museum,

London (R/NHMUK). All sampled bones (femora, tibiae, humeri,

fibulae, and pubii) where already broken, lacking either the distal

or proximal ends. In case of the femora, it was also possible to use

isolated shafts, because the distal beginning of the fourth

trochanter or the medial depression helped to clarify its orientation

and the best position for the thin section. The prepubic process of

the pubis represents the only non-long bone element and was

chosen to highlight further variability within the skeleton of

Dysalotosaurus. It is important to note that it was impossible to take

thin sections from a standard level, because only incomplete

specimens were used. Furthermore, it was aimed to cause as less

damage as possible, so that most of the cuts were carried out close

to broken surfaces. Thus, the sections are standardized to a single

interval along the bone shaft and not to a single level (Fig. 25).

Distinct processes or expansions helped to verify the relative

position of the section.

Figure 25. Intervals of cutting levels in the sampled elements.
Abbr.: F – Femur (lateral view); Fb – Fibula (lateral view); H – Humerus
(anteromedial view); P – Pubis (lateral view); T – Tibia (posterior view).
Elements are not scaled.
doi:10.1371/journal.pone.0029958.g025
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The bones were cross cut with a diamond powder disk on a

precision saw. Due to the brittle nature of many bones, they were

temporally embedded in acetone dissolvable two-component

epoxy-resin (Technovit 5071) during the sawing process. By the

following well known process of grinding and cutting (see e.g.

[9,22,109]), the produced thin section got a final thickness of

approximately 100 mm.

Sorting of Thin Sections
The description of bone tissue types and structures found in the

sampled bones of Dysalotosaurus generalizes the observations for

each of the elements. Some cross sectional units have very special

and recognizable features, which helped to orientate them even

without the actual bone. Distances are only measured along the

anteroposterior axis or the mediolateral axis (see Tables 1, 2, and

3). All steps beyond the description, which incorporates the count

and correlation of growth cycles, were only done with femora,

tibiae, and humeri. The other sampled elements were too close to

the metaphysis (fibulae) or they had a too thin periosteal bone wall

(pubii) to gain enough quantitative information.

All thin sections with growth cycles were sketched using Adobe

Photoshop 7.0 software. Due to the large error in taking

standardized thin sections, it was impossible to simply superimpose

the sketches of different ontogenetic stages of a sampled element to

get a complete record of all growth cycles from the smallest to the

largest specimen. Thus, thin sections of femora were sorted into

four groups and the sections of the tibiae into two groups

depending on cutting level and cross sectional shape. Humeri were

not sorted due to the relative constancy of the outer cross sectional

shape (Tables 1, 2, and 3).

Conversion of Growth Cycles into Absolute Age
Estimates

The basic assumption is the annual character of the present

growth cycles (see above). It was the goal to correlate the cycles of

all cross sections of one group of a single skeletal element, to count

the final number of cycles, and to equalize them into years.

Superimposition of sketches did not lead to a good correlation of

growth cycles due to variation in cross sectional shape and the

course and distances of growth cycles to each other. Hence,

another way was chosen to get a correlation, which was also

carried out by using Adobe Photoshop 7.0 software.

The end of each growth cycle was marked in the sketches by a

permanent line. A standard location within the cross sections,

which usually revealed the best record of growth cycles, was

determined for femora, tibiae, and humeri respectively. In tibiae,

two fitting locations were found and the final growth cycle values

were then averaged.

The first step towards the correlation of cycles was the definition

of an unambiguous and repeatable midpoint for every used cross

section (Fig. 26). Femoral cross sections mostly have a triangular

shape, so that two types of geometric triangles were generated.

The vertices of the first triangle were set on the utmost extremity of

each of the three corners of the cross section (Fig. 26A). The

vertices of the second triangle were generated by three straight

lines, which were placed on the external edge of the three straight

walls. Each line was then graphically shifted onto the utmost

extremity of the opposing corner in the cross section and the

respective vertex was set. The midpoint of both triangles was

generated, but the midpoints of both triangles did not coincide in

most cases. The midpoint of a straight line, drawn between both

triangle midpoints, was therefore defined (Fig. 26B). To minimize

possible error, a circle was additionally drawn as large as possible

to fit right on the outer contour of the femoral cross section.

Another straight line was created between the midpoint of this

circle and the combined midpoint of both triangles, so that the

actual midpoint of the whole femoral cross section was the

midpoint of this line (Fig. 26C).

The cross sectional shape of tibiae and humeri were much more

oval in shape. Here, the midpoints of two circles were used to

determine the midpoint of the cross section. One circle was

graphically scaled down as small as possible to enclose the cross

section externally and just tangent the outer edge. The second

circle was scaled up as large as possible to tangent the outer cross

sectional edge internally. The midpoint of a straight line, which

was drawn between the two obtained circle midpoints, was then

determined as the midpoint of the cross section (Fig. 26D).

During the next step, the distance between the cross sectional

midpoint and each of the recorded growth cycles was measured

and transformed into partial percentages of the distance between

the midpoint and the external cross sectional edge. The reference

measurement for each of the cross sections, representing 100%

from midpoint to external edge, was already measured before at

the respective sampled specimen. Since not the same reference

measurement could be taken from each of the femora, tibiae, and

humeri, regression equations were calculated with Microsoft

Figure 26. Sketches showing important steps to gain a
standardized midpoint in cross sections for the measurement
of distances between this midpoint and the external border of
each growth cycle. A–C: Late juvenile femur GZG.V 6590 28: A – First
triangle with its vertices on the utmost extremities of each corner; B –
Second triangle with vertices extrapolated from the respective
opposing straight walls. The blue point in the centre is the midpoint
from both triangles; C – The final midpoint of the cross section is
derived from the blue midpoint of the triangles and the orange
midpoint of the sketched circle. The green line lies parallel to the course
of the growth cycles and the distances (e.g. blue double arrow) are then
measured perpendicular to the cycles in the posterolateral part of the
posterior wall. D – Late juvenile tibia GPIT/RE/3724: The midpoints of an
inner and an outer circle (blue and orange, respectively) are used to get
the final midpoint (red) for measuring the growth cycle distances. All
sketches are not scaled, but consistently oriented with the anterior
direction at the top and the medial direction at the left. The red area in
A–C represents the anterior CCCB-wedge. Lines in green mark damage
of the cross sections.
doi:10.1371/journal.pone.0029958.g026
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Office Excel 2007 software to get the allometric relationships for

these distances. In the end, all reference measurements were

transformed into diaphyseal circumference and distal mediolateral

width in femora, distal mediolateral width for tibiae, and

mediolateral width at the deltopectoral crest for humeri

(Tables 1, 2, and 3). The data for the allometric calculation was

taken from the measurement dataset of complete specimens of

these long bones (Table S1).

It is important to note that each measurement from the cross

sectional midpoint to a growth cycle was taken perpendicular to

the course of the latter. In all femora, the best growth record was

preserved in the lateral part of the posterior wall, close to the

posterolateral corner. A straight line was drawn from the midpoint

parallel to the course of the growth cycles and the measurement

was then taken laterally from the midpoint and perpendicular to

the course of the growth cycles (Fig. 26C). In all tibiae and humeri,

such an additional line was not necessary and all measurements

were directly taken from the midpoint. The best growth record in

tibiae was preserved in anterior and medial direction and in the

humeri in anterior direction only.

A special cycle, observed in five large femora and marking initial

sexual maturity (MISM), was measured in the same way as the

growth cycles.

All measured percentages of growth cycles were then trans-

formed, in a third step, into partial values of the reference distance

of the respective cross section (representing 100%) and recorded in

an Excel file. The values of each cross section were sorted in their

respective group, one in humeri, two in tibiae, and four in femora.

The following correlation of growth cycles was therefore done only

within a single group. The still uncorrelated growth cycles of each

group were related to age in years. A diagram was then created,

were the x-axis represents age and the y-axis partial reference

values of the growth cycles of each cross section of this group. The

correlation of growth cycles to age in years started by fitting the

lowest known value to an age of one year. This could be done,

because the respective value was derived from the smallest

sampled specimen (Tab. 1), where the corresponding growth

cycle was found at the outer edge of the completely unremodelled

and unresorbed bone wall (Fig. 8A–B). The distance of successive

growth cycles of the other cross sections in the dataset as well as

the diagram revealed the general distance of values between two

successive years. First, all values of a single cross section were

shifted, so that the smallest value of a cross section fit onto a value

of another one. In this way, the values of every single section of this

group were fitted to get a single curve in the diagram, where

possible outliers are minimized. It occurred especially in large or

strongly obscured cross sections that the successive growth cycle

values could be separated, because the large distance between

them could be filled by successive values of other sections. The

MISM was separately signed into the diagrams of two groups of

femora.

Calculation of Body Mass
Two out of four groups of sampled femora were chosen to

convert their age related growth cycles into body mass estimates.

The samples of the other two groups are not appropriate, because

their location within the shaft is either too proximal or too distal,

and their small number of recorded growth cycles only covers

three to four years. In contrast, growth cycles of several samples in

femoral group one and two were often placed within the same year

of age during correlation. In this case, the average of all values of

this year was used as the basis for the body mass calculation.

Two methods of calculating body mass by skeletal elements

were considered. The first method was derived by Anderson et al.

[64] by using the combined humeral and femoral shaft

circumference to calculate body mass in quadruped animals. For

biped animals, only the femoral shaft circumference was necessary.

The following equation was therefore used for Dysalotosaurus

femora, W = 0.16 CF
2.73, where W is the weight and CF is the

circumference of the femur.

The accuracy of this method was recently doubted [110].

However, the conventional model predicts the body mass of small

to medium-sized animals much better than the proposed

alternative [111]. It is also more reliable to the natural variability

of body mass in different size categories than the proposed non-

linear alternative [111]. Thus, it is assumed that the method of

Anderson et al. [64] used here is still the best model to predict the

body mass in the rather small-bodied dinosaur Dysalotosaurus.

The second method was derived by Erickson & Tumanova [27]

known as Developmental Mass Extrapolation (DME). The basis

for this body mass calculation, which emphasizes the effect of

ontogeny on mass increase, is the assumption that the approxi-

mately third power of femoral length corresponds to body mass in

Alligator (data in [112]) and the California Gull (data in [113]).

Both species represent members of outgroups of non-avian

dinosaurs (Extant Phylogenetic Bracket [114]), so that the ratio

of femoral length to body mass could also be used for

Dysalotosaurus. This was also done for the respective values of the

MISM.

Establishing the Growth Curve
To compare the life history of Dysalotosaurus to other dinosaurs

and recent animals, a type of growth curve had been chosen,

which was already used by Erickson et al. [77].

The calculated body mass of the averaged growth cycles was

therefore plotted against their respective age in years. The

equation y = a/(1+exp (b * (x+c)))+d describes the sigmoidal course

of this type of growth curve (y = body mass; x = age in years;

a = largest known body mass; b, c, d = parameters to fit). The

variable a was derived from the largest known femur with a

calculated body mass of 115.3 kilograms. Only the secured growth

cycle values were integrated and all unsecured values, including

the values externally to the MISM, were excluded. The latter

values were entered afterwards into the curves to evaluate their

significance and possible age correlation. The MISM itself was

included with the corresponding age of 9.5 years in femur group

one and 10.5 years in femur group two. A total of four curves were

created, including the calculated body masses by the methods of

Anderson et al. [64] and Erickson & Tumanova [27] for femoral

group one and two, respectively. The dataset was entered into the

software Microcal Origin and the non-linear curve fit function

(basing on least-square regression analysis) was performed using

the equation mentioned above.

Growth Rates and Age/Size Frequency Distribution
To get yearly and daily growth rates, the calculated yearly body

masses were derived by using the sigmoidal equations and the four

parameters of each of the four growth curves. One version

corresponds to the growth rate in a recent year (365 days) and the

second version corresponds to a year in the Late Jurassic

(Kimmeridge, 150 million years ago), which contained approxi-

mately 377.76 days [27,115]. The maximum growth rate per day,

calculated in gram, was then plotted into the diagram of Erickson

et al. [77].

The final step was the combination of the absolute age estimates

with the size frequency distribution of all femora (Fig. 23), so that

one can assign a certain position within this distribution to a

certain age. First, the allometric relationships for the femoral distal
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mediolateral width and femoral circumference were determined

by combining the values of all measured specimens with the

sectioned samples. The allometric relationship for the femoral

circumference and length was obtained from the measured

specimens with both distances preserved (Table S1). Second, the

calculation of age for all femora was carried out by conversion of

the sigmoidal equation to x (age in years), which resulted in the

following equation: x = ln ((a/(y2d)21)/b+c (y = body mass

calculated by either the method of [64] or [27]; the parameters

a, b, c, d were derived from each of the four growth curves). The

obtained ages of the separately calculated versions for both

femoral groups were averaged for the dataset derived from the

Anderson et al. [64] body mass calculation and for the dataset

derived from the Erickson & Tumanova [27] body mass

calculation. These average estimates were then correlated with

the circumferences and distal mediolateral widths of the femora.

Thus, every single value of both measured distances can now be

assigned to a specific age (see Tab. 1).

Supporting Information

Figure S1 Detail of cross section of tibia SMNS T 13,
under polarized light; Anterolateral unit internally;
Marrow cavity at top left. The original vascularization is

obviously altered by postmortem dissolution of bone tissue.

Former primary osteons are lost during this process and the

vascular canals are widened. Scale bar = 500 mm.

(TIF)

Table S1 List of all specimens and measured data of
humeri, tibiae, and femora, which were used for the
allometric calculation of the reference values necessary

for the correlation of growth cycles in the sampled
specimens.
(DOC)

Text S1 This text comprises a more comprehensive
description of the thin sections of all five skeletal
elements of Dysalotosaurus and additionally includes
notes on the modes of preservation of the bone
microstructure as well as on the occurrence and
distribution of osteocyte lacunae and Sharpey’s fibers.
(DOC)

Acknowledgments

I want to thank Martin Sander (Bonn) for introducing me into the depths of

bone histology. Without him, I would never have properly understood this

tricky topic with all its sometimes unmanageable variation. He also was the

first who recognized the medullary bone in a sample, which led to many

important results. I am very thankful for his help and time. I also thank

Nicole Klein and Koen Stein, both from Martin Sanders team in Bonn, for

helpful discussions and hints as well as Olaf Dülfer (also Bonn) for his

comments on the production of thin sections. I further want to thank

Oliver Rauhut (Munich) for his support and advice, Cathleen Helbig

(Munich) for her skilled preparation of the thin sections, Frank Melcher

(Hannover) for giving me access to microscopy equipment to make

additional photos of the thin sections, and Wiete Hübner for her help with
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